Extending the BoOST stellar model grid

Hanno Stinshoff

Physics 1st Institute: Astrophysics Zülpicherstraße 77 50939 Köln

July 23, 2021

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Structure

- Theory
 - Stellar Structure Equations
- Motivation
 - BoOST
 - Nucleosynthesis
 - Differences in Evolutionary Behaviour
- Results
 - The Models
 - Mass vs time
 - Hertzsprung Russell Diagramms
 - Surface Helium Mass Fraction

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Stellar Structure Equations

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho} \leftarrow \partial m = 4\pi r^2 \rho \,\partial r \tag{1}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \tag{2}$$

$$\frac{\partial L}{\partial m} = \epsilon - T \frac{\partial S}{\partial t} \tag{3}$$

$$\frac{\partial T}{\partial m} = -\frac{3\kappa L}{64\pi^2 a c T^3 r^4} \tag{4}$$

$$\frac{\partial X_i}{\partial t} = \frac{m_i}{\rho} (-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i}) \tag{5}$$

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Stellar Structure Equations_[2]

$$\frac{\partial T}{\partial m} = -\frac{3\kappa L}{64\pi^2 a c T^3 r^4}$$

$$j = -|D\nabla n| = -|\frac{1}{3}v I_p \nabla n| \qquad (6)$$

$$|\text{with } v = c, I_p = I_{ph} = \frac{1}{\kappa\rho} \text{ and } U = aT^4 \rightarrow \frac{\partial U}{\partial r} = 4aT^3 \frac{\partial T}{\partial r} \quad (7)$$

$$F = -\frac{4acT^3}{3\kappa\rho} \frac{\partial T}{\partial r} = -k_{rad} \nabla T \quad |\text{and with } L = 4\pi r^2 F \quad (8)$$

$$\frac{\partial T}{\partial r} = -\frac{3\kappa\rho L}{16\pi a c r^2 T^3} \qquad (9)$$

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

BoOST

Figure: Unboosted Stellar Track of a 12 M_{sol} model

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

BoOST

Figure: Position of Equivalent Evolutionary Points (EEPs) during the lifetime of some typical models and amount of datalines for BoOST and non-BoOST [4]

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Nucleosynthesis

Figure: CNO-, MgAI- and NeNa-cycles[1]

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Evolutionary Behaviour

Figure: Surface helium mass fraction at the end of the main sequence for models of 1Zw18[3], a dwarf galaxy with Z=0.02 Z_{mw}

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Evolutionary Behaviour

Figure: HRD for models of 1Zw18, picturing both CHE and NE[3]

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Models done:

The base with and basels also						
Siz tea pri un-koen de	(621)					
stinshoff@pegasus:/mec	lia/stinshoff/SKY/PURPLE	E/BEC/bin\$ ls				<u>^</u>
10-0.02-all-smc	40+0.02+all-smc.grid	n10-20.1-v300.snc	m150-z1-v8.smc	m300-z0.02-v100.smc	m40+20.2+v0.smc	n500+21+v100.snc
10-0.02-all-smc.grid						n500+z1+v200.lnc
10-0.05-all-smc	40+0.05+all-smc.grid					#580+21+V200.mv
10-0.05-all-smc.grid						#500+21+v200.snc
10-0.1-all-smc						n500-21-v300.lnc
10-0.1-all-smc.grid						#500-21-v300.mv
10-0.2-all-smc						#500-21-v300.snc
10-0.2-all-smc.grid						n500-21-v400.lnc
10-0.5-all-smc	40-0.5-all-smc.grid	n10-20.2-v500.snc	m150-z1-v300.mw	m300-z0.05-v300.smc	m40-20.5-v200.smc	#500-21-v400.mv
10-0.5-all-smc.grid						n500-21-v400.snc
10-1-all-lmc						n500-z1-v500.lnc
10-1-all-lmc.orid						#500-21-v500.mv
10-1-all-mv						n500-21-v500.snc
10-1-all-mw.grid						n80-20.02-v0.snc
10-1-all-smc						n80-z0.02-v100.snc
10-1-all-smc.orid						n80-z0.02-v200.snc
150-0.02-all-smc						n80-z0.02-y300.snc
150-0.02-all-smc.orid						n80-z0.02-y400.snc
150-0.05-all-smc						n80-z0.02-v500.snc
150-0.05-all-smc.orid						n80-z0.05-v0.snc
150-0.1-all-smc						n80-z0.05-v100.snc
150-0.1-all-smc.orid						n80-z0.05-v200.snc
150-0.2-all-smc						n80-z0.05-y300.snc
150-0.2-all-smc.orid						n80-z0.05-y400.snc
150-0.5-all-smc						n80+z0.05+y500.snc
150-0.5-all-smc.orid						n80+z0,1+v0,snc
150-1-all-lmc						n80+z0,1+v100,snc
150-1-all-lmc.orid						n80+z0,1+v200,snc
150-1-all-mw						n80+z0,1+v300,snc
150-1-all-mw.orid						n80+20,1+y400,snc
150-1-all-smc						n80+20,1+v500,snc
150-1-all-smc.orid						n80+20,2+v0,snc
20-0.02-all-smc						n80+20,2+v100,snc
20-0.02-all-smc.orid						n80+20,2+y200,snc
20-0.05-all-smc						n80+20,2+y300,snc
20-0.05-all-smc.orid						n80+20,2+y400, snc
20-0.1-all-suc						n80+20,2+y500,snc
20-0.1-all-smc.orid						n80+20,5+y0,snc
20-0.2-all-smc						n80-20.5-v100.snc
20-0.2-all-smc.orid						n80-20,5-y200, snc
20-0.5-all-suc						n80-20,5-y300, snc
20-0.5-all-smc.grid						n80-20.5-v400.snc 🗸

Figure: 7 masses (10-500 M_{sol}), 8 metallicities (Z_{mw} to 0.02 Z_{smc}) and 6 rot. velocities (0 to 500 km/s), equaling to around 330 models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Core Helium Mass Fraction

Figure: Core Helium Mass Fraction at the current end of the lifetime of the models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Mass vs time

Figure: Mass in M_{sol} vs time in 10⁶ years of the models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Mass vs time

Figure: Mass in M_{sol} vs time in 10⁶ years of the models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

HRD

Figure: Hertzsprung Russell Diagramms of the models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

4D Plot of the surface helium mass fraction

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Figure: Y_S vs time of the models

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Summary of the Results

- Big grid of models (330 models)
- Displays properties like expected
- Evolutionary behaviour shown
 - (CHE/TE/NE)

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

Outlook

Hanno Stinshoff's Master Thesis Plans. Updated: 6/7/21 Supervisor: Dorottya Szécsi

Task Time (Semester/Month)	1/1	1/2	1/3	<i>l/4</i>	l/S	11/1	11/2	11/3	11/4	11/5
Preparationary Projects	-	-								
Reading and learning the relevant literature										
Learning R programming language										
Writing own script to plot data files of stellar models										
Installing the Bonn Code via the "BEC Interface" on the external hard drive			- √							
Learning to run stellar models with the Bonn Code ("BEC Interface")			- √							
Comparing result to published result using R			- √							
Research project part I. – Grid in a 3D parameter space (M, v, Z) on the early Main Sequence, Setting U	p									
Designing the 3D parameter space				- √						
7 masses, 6 velocities and 8 metallicities = ~336 models				- √						
Writing the scripts to loop over the parameters					- √					
Research project part II Grid in a 3D parameter space (M, v, Z) on the early Main Sequence, Optimizi	ng & Co	mputing								
Experimentally establishing the right number of structure models to be stored per sequence										
Finding a way to stop the computation at before of EEP point 'B' of the BoOST format (Yc~0.6)					\checkmark	\checkmark				
Computation of the models, checking for completeness						√				
Research project part III. – Creating tools to analyse the models										
Plotting the time evolution of the models' physical quantities						\checkmark				
treating "bunch diagrams" out of plots						\checkmark				
Visualizing the grids in a 3D diagram							\checkmark			
Research project part IV. – Analysing the models	_	_								
Analysing the physical predictions of the models (M, Mdot, central & surface abundances etc.)						\checkmark	1			
Inderstanding the problematic cases (Eddington limit proximity, breakup velocity etc.)										
Describing the occurrence of Chemically homogeneous evolution										
Giving Research Seminar & Writing the Thesis		_								
etting experience with scientific writing in English				- √		\checkmark				
Giving a research seminar (slides, learning presentation tool "impressive", trials, giving the talk)										
Designing the thesis, researching & writing the Introduction							- √			
Writing down thesis results and the scientific conclusions										
Incorporating all scripts into the 'beci' interface for future convenience										

Figure: Current Progress Plan of the thesis

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

Outlook

- Grid can and will be expanded (timewise and finer resolution in critical areas)
- BoOST format can and will be implemented for those models, once they're at the end of their development
- More investigations on various parameters possible and planned (e.g. isotope abundances)

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

The end

Thanks for your attention!

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

- Axel Boeltzig, C. Bruno, Francesca Cavanna, Sergio Cristallo, T. Davinson, R. Depalo, Richard Deboer, A. Leva, Federico Ferraro, Gianluca Imbriani, P. Marigo, Filippo Terrasi, and Michael Wiescher.
 Shell and explosive hydrogen burning. *The European Physical Journal A*, 52, 04 2016.
- Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and Evolution. Springer, 2nd edition, 2012.

 Dorottya Szécsi, Norbert Langer, Sung-Chul Yoon, Debashis Sanyal, Selma de Mink, Christopher J. Evans, and Tyl Dermine.
 Low-metallicity massive single stars with rotation evolutionary models applicable to i zwicky 18.

Hanno Stinshoff Physics, 1st Institute: Astrophysics Faculty of Mathematics and Natural Sciences

University of Cologne

A&A, 581:A15, 2015.

Dorottya Szécsi, Richard Wünsch, Poojan Agrawal, and Norbert Langer. 'bonn' optimized stellar tracks (boost). simulated populations of massive and very massive stars for astrophysical applications, 2020.

