Massive stars from various simulations: why so different? Nagytömegű csillagok 1D szimulálása: mi okozza a különbségeket a modellekben?

Dorottya Szécsi

Assistant professor at Nicolaus Copernicus University, Poland Humboldt Fellow, University of Cologne, Germany

NKE Budapest, 26. August 2021

What is a star?

hot, dense plazma

pressure gradient

Theoretical modelling of the stellar structure

composition change due to nuclear burning:

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right) \quad (5)$$

When the equilibrium* is compromized: the Eddington limit

* between gravity & radiation pressure

Other reasons for falling out of equilibrium:

iron core

→ gravitational collapse & SN (due to bounce-back)
 • pair-instability

 → grav. collapse & subsequent thermonuclear explosion (PISN) or pulsations (puls-PISN)

 • end of a burning phase

 → restructuring, crossing the Herzsprung-gap...

Eddington limit

Credit: Stan Owocki

Consequences for the stellar interior

- density (and pressure) <u>inversion</u> in the envelope
- no efficient energy transport mechanism here (weak convection)
- → envelope "<u>inflation</u>"
 numerical difficulties...

density inversion:

credit: Götz Gräfener

Is there a solution?

- several "tricks" in the literature
 - various codes use various tricks & methods
 - cf. Agrawal (PhD Thesis), Szécsi & Agrawal ('21, in prep.)
- PARSEC ('Padova') artificially limiting the temp. gradient
- MIST (MESA)

BoOST ('Bonn')

- MLT++ formalism *(limiting the superadiabacity*)* =changing how convection** is treated **a type of internal mixing
 - *difference between the isothermal and adiabatic temperature gradient
- artificially enhanced mass loss at the right moment

• BPASS

'Geneva'

inflated envelope & post-processing with 'normal' mass loss

Ionizing flux...

Table 1. Ionizing photon number flux $[s^{-1}]$ in the Lyman continuum emitted *on average* by the stellar models during their lives, cf. Sect. 2.3. The last column provides the amount of Lyman radiation (number of photons $[s^{-1}]$) that a 10⁷ M_☉ population (e.g. a starburst galaxy or a young massive cluster in the Milky Way) containing these massive stars would emit.

$\rm M_{ini}~[M_{\odot}]$	24/25	40	80/85	120/125	pop.
PARSEC	3.7e48	1.3e49	5.5e49	1.0e50	1.08e54
MIST	3.3e48	1.5e49	5.1e49	1.1e50	1.06e54
Geneva	3.5e48	1.2e49	4.6e49	7.8 e 49	9.27 e53
BPASS	3.6e48	1.3e49	4.5e49	7.7 e 49	9.34e53
BoOST	3.7e48	1.2e49	4.4 e 49	7.4e49	9.14e53

up to 15% difference!

Gravitational waves: compact object mergers (e.g. black holes)

Figure 2. Mass of stellar remnant as a function of the initial mass of the star (near-solar composition). Differences in the assumptions in massive star modelling can cause a variation of up to 20 M_{\odot} in the remnant masses between simulations. Choosing to apply one of these simulations over the others in e.g. gravitational-wave event rate predictions can lead to strikingly different results.

up to 20 M_o difference!

Take away messages

Eddington limit is a thing :)
 stellar evolution above 40 M_☉ has

 not reached consensus

 use stellar models with extra caution, be flexible for updates

Thanks!

