Dorottya Szécsi University of Cologne

Brankica Kubárová (Ondřejov) Jíři Kubát (Ondřejov) Carolina Kehrig (Granada) Andreas Sander (Armagh)

Normal OB-star:

Royal Observatory, Edinburgh, Uk 14th May 2019

Say cheese!

Dorottya Szécsi University of Cologne

Brankica Kubárová (Ondřejov) Jíři Kubát (Ondřejov) Carolina Kehrig (Granada) Andreas Sander (Armagh)

Royal Observatory, Edinburgh, UK 14th May 2019

Dorottya Szécsi University of Cologne

Brankica Kubárová (Ondřejov) Jíři Kubát (Ondřejov) Carolina Kehrig (Granada) Andreas Sander (Armagh)

Say cheet !

Royal Observatory, Edinburgh, UK 14th May 2019

Dorottya Szécsi University of Cologne

Brankica Kubárová (Ondřejov) Jíři Kubát (Ondřejov) Carolina Kehrig (Granada) Andreas Sander (Armagh)

Royal Observatory, Edinburgh, UK 14th May 2019

Chem.hom.evolving stars

Dorottya Szécsi: CHE stars – ionization & carbon emission

Transparent Wind UV-INtense ≈ Chemically-Homogeneously Evolving

Szécsi & Langer et al. (2015) *A&A* 581, A15 – Paper I Kubátová & Szécsi et al. (2019) *A&A* 623, A8 – Paper II Szécsi & Kubátová et al., subm. *A&A* – Paper III?

Dorottya Szécsi: – CHE stars ionization & carbon emission

Langer (1989) A&A 210, 93 Szécsi & Langer et al. (2015) A&A 581, A15 – Paper I

Dorottya Szécsi: CHE stars – ionization & carbon emission

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ I Zwicky 18 (Kehrig et al. 2015)

Langer (1989) A&A 210, 93 Szécsi & Langer et al. (2015) A&A 581, A15 – Paper I

Dorottya Szécsi: CHE stars – ionization & carbon emission

Dorottya Szécsi: CHE stars – ionization & carbon emission

Szécsi & Langer et al. (2015):

• correcting T_{eff} for wind optical depth τ

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ I Zwicky 18 (Kehrig et al. 2015)

Langer (1989) A&A 210, 93 Szécsi & Langer et al. (2015) A&A 581, A15 – Paper I

Dorottya Szécsi: CHE stars – ionization & carbon emission

Szécsi & Langer et al. (2015):

- correcting T_{eff} for wind optical depth τ
- Black Body (!)

$Q(He II)^{observed} = 1.33e50 \ \gamma/s$ I Zwicky 18 (Kehrig et al. 2015)

Langer (1989) *A&A* 210, 93 Szécsi & Langer et al. (2015) *A&A* 581, A15 – Paper I

Dorottya Szécsi: CHE stars – ionization & carbon emission

Szécsi & Langer et al. (2015):

- correcting T_{eff} for wind optical depth τ
- Black Body (!)
- using only Main Sequence phases

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ I Zwicky 18 (Kehrig et al. 2015)

Langer (1989) A&A 210, 93

Dorottya Szécsi: CHE stars – ionization & carbon emission

Szécsi & Langer et al. (2015):

- correcting T_{eff} for wind optical depth τ
- Black Body (!)
- using only Main Sequence phases
- Salpeter IMF with $M_{up} = 500 \ M_{\odot}$

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ | Zwicky 18 (Kehrig et al. 2015)

Langer (1989) A&A 210, 93

• Szécsi & Langer et al. (2015):

- correcting ${\rm T}_{\rm eff}$ for wind optical depth τ
- Black Body (!)
- using only Main Sequence phases
- Salpeter IMF with $M_{up} = 500 M_{\odot}$
- 20% of stars evolve with CHE

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ I Zwicky 18 (Kehrig et al. 2015)

Langer (1989) A&A 210, 93

• Szécsi & Langer et al. (2015):

- correcting $T_{\rm eff}$ for wind optical depth au
- Black Body (!)
- using only Main Sequence phases
- Salpeter IMF with
 - $M_{up}=500~M_{\odot}$
- 20% of stars evolve with CHE
- $Q(He II)^{synt.pop.} = 1.60e50 \gamma/s$

 $Q(He II)^{observed} = 1.33e50 \ \gamma/s$ | Zwicky 18 (Kehrig et al. 2015)

Langer (1989) *A&A* 210, 93 Szécsi & Langer et al. (2015) *A&A* 581, A15 – Paper I

PoWR spectra of CHE stars...

(Kubátová & Szécsi et al. 2019A & A 623, A8 – Paper II)

Dorottya Szécsi: CHE stars – ionization & carbon emission

- correcting T_{eff} for wind optical depth τ
- Black Body (!)
- using only Main Sequence phases
- * Salpeter IMF with $M_{up}=500~M_{\odot}$
- 20% of stars evolve with CHE
- $Q(He_{II})^{synt.pop.} = 1.60e50 \ \gamma/s$

Dorottya Szécsi: CHE stars – ionization & carbon emission

- Szécsi & Langer et al. (2015):
 - correcting ${\rm T}_{\rm eff}$ for wind optical depth τ
 - Black Body (!)
 - using only Main Sequence phases
 - * Salpeter IMF with $M_{up}=500~M_{\odot}$
 - 20% of stars evolve with CHE
- $Q(He_{II})^{synt.pop.} = 1.60e50 \ \gamma/s$

- This work:
 - PoWR SED
 - including post-MS

Dorottya Szécsi: CHE stars – ionization & carbon emission

- Szécsi & Langer et al. (2015):
 - correcting ${\rm T}_{\rm eff}$ for wind optical depth τ
 - Black Body (!)
 - using only Main Sequence phases
 - * Salpeter IMF with $M_{up}=500~M_{\odot}$
 - 20% of stars evolve with CHE
- $Q(He_{II})^{synt.pop.} = 1.60e50 \ \gamma/s$

- This work:
 - PoWR SED
 - including post-MS
 - $M_{up} = 150 M_{\odot}$

Dorottya Szécsi: CHE stars – ionization & carbon emission

- Szécsi & Langer et al. (2015):
 - correcting ${\rm T}_{\rm eff}$ for wind optical depth τ
 - Black Body (!)
 - using only Main Sequence phases
 - * Salpeter IMF with $M_{up}=500~M_{\odot}$
 - 20% of stars evolve with CHE
- $Q(He_{II})^{synt.pop.} = 1.60e50 \ \gamma/s$

- This work:
 - PoWR SED
 - including post-MS
 - $M_{up} = 150 M_{\odot}$
 - 10% CHE

Dorottya Szécsi: CHE stars – ionization & carbon emission

- Szécsi & Langer et al. (2015):
 - correcting ${\rm T}_{\rm eff}$ for wind optical depth τ
 - Black Body (!)
 - using only Main Sequence phases
 - * Salpeter IMF with $M_{up}=500~M_{\odot}$
 - 20% of stars evolve with CHE
- $Q(He II)^{synt.pop.} = 1.60e50 \gamma/s$

- This work:
 - PoWR SED
 - including post-MS
 - $M_{up} = 150 M_{\odot}$
 - 10% CHE

•Q(He II)^{syn.pop.} = $1.92e50 \ \gamma/s$

- Szécsi & Langer et al. (2015):
 - correcting $T_{\rm eff}$ for wind optical depth τ
 - Black Body (!)
 - using only Main Sequence phases
 - Salpeter IMF with $M_{up}=500~M_{\odot}$
 - 20% of stars evolve with CHE
- $Q(He II)^{synt.pop.} = 1.60e50 \gamma/s$

- This work:
 - PoWR SED
 - including post-MS
 - $M_{up} = 150 M_{\odot}$
 - 10% CHE

•Q(He II)^{syn.pop.} = $1.92e50 \ \gamma/s$

$$C \text{ iv } \lambda 1550 \text{ Å line lum.}^{observed} = \frac{4.67e37 \text{ erg/s}}{(Brown \text{ et al. } 2002)}$$
$$synt.pop. = \frac{4.42e37 \text{ erg/s}}{This \text{ work}}$$

Line luminosities in C iv $\lambda 1550$ Å

Interpolation

HRD with $\tau\text{-corrected}\,T_{\text{eff}}$

HRD with only MS evolution

HRD with post-MS evolution

HRD with post-MS evolution

