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Yoon et al. 2006: low Z tracks on the HRD
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Yoon’06: IGRB and SN progenitors at different Z

Z=0.004 Z=0.002

SN I BH (SN 1I) SN II BH (SN II)
0.0 L L 1 Il 0.0 L I L |
10 20 30 40 50 60 10 20 30 40 50 60
My [Mo] My [Mo]
Z=0.001 7=0.00001
0.8 T T

0.6
E L
04
&
02
BH (SN 1) L SN Il BH (SN 1)
0.0 1 | 1 1 0.0 L L L L 1
10 20 30 40 50 60 10 20 30 40 50 60
Monse [Mo] My [Mo]



Yoon’06: IGRB and SN progenitors at different Z
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Progenitors of IGRB and SN Ib/c are WR stars
® scarce observations and complicated physical conditions —

° mass loss rate determinations are highly uncertain
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Mass loss recipes used in Yoon’06 for WR stars
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* enhanced mass loss due to CNO in the surface: M = f - Mf95,
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¢ ad-hoc approach f~19-Zcno

° probably unphysical
(CNO are ionized at Ty > 10°K) 7%

* How much does it effect the final fate predictions?
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LGRB rate of Yoon’06 — REVISED
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IGRB rate of Yoon'06 — REVISED
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Waiting for comments and questions!

Thank you for
ﬁ your attention!
K
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