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Stellar evolution + mass loss recipes

Stellar evolutionary tracks
• hydrodynamic simulation of an

isolated, rotating gas sphere (= star )

• nuclear burning, 1D

• Hertzsprung–Russell diagram:
Teff vs. Luminosity (log)  4.6
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Mass loss on the top of it
• model atmospheres with different L∗, M∗, Teff , v∞/vesc (Vink et al. 2000 )

• OR spectral analyses→ Ṁ as a function of L∗ etc. fitted (= "mass loss recipe
e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription" )

logṀ = −11.95 + 1.5log
L∗
L

+ 2.85Xs + 0.86logZ

• Ṁ is calculated in every step and the corresponding M is removed

→ fast but approximate
→mass loss rate has a feedback on the evolution!
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Yoon et al. 2006 : low Z tracks on the HRD
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Yoon’06 : lGRB and SN progenitors at different Z
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The infamous Wolf–Rayet mass loss

Progenitors of lGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions→

• mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution
...and on the final fate too!

Mass loss recipes used in Yoon’06 for WR stars

• Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001 �

• enhanced mass loss due to CNO in the surface: Ṁ = f · ṀH95,
f ∼ 19 ·ZsurfCNO• ad-hoc approach

• probably unphysical
(CNO are ionized at Teff > 105K) ?�

• How much does it effect the final fate predictions?
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f ∼ 19 ·ZsurfCNO• ad-hoc approach

• probably unphysical
(CNO are ionized at Teff > 105K) ?�

• How much does it effect the final fate predictions?



The infamous Wolf–Rayet mass loss

Progenitors of lGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions→

• mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution
...and on the final fate too!

Mass loss recipes used in Yoon’06 for WR stars

• Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001 �

• enhanced mass loss due to CNO in the surface: Ṁ = f · ṀH95,
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f ∼ 19 ·ZsurfCNO• ad-hoc approach

• probably unphysical
(CNO are ionized at Teff > 105K) ?�

• How much does it effect the final fate predictions?



The infamous Wolf–Rayet mass loss

Progenitors of lGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions→

• mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution
...and on the final fate too!

Mass loss recipes used in Yoon’06 for WR stars

• Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001

�
• enhanced mass loss due to CNO in the surface: Ṁ = f · ṀH95,
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With and without CNO enhanced mass loss

67 M� v/vc=0.3 tracks from Szécsi et al. 2014
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Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss
and/or Hamann et al 1995.

• Purpose of this study:
• insight into stellar evolution + mass loss
• how much final fate predictions are changed by mass loss

• Waiting for comments and questions!

Thank you for

your attention
!
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WR wind mass loss rates

Fig. 1. of Yoon & Langer 2005

Wolf-Rayet wind mass loss rates as a
function of the stellar luminosity for a
given surface composition.

Hamann et al. 1995 : HKW95 (solid)
Nugis & Lamers 2000 : NL00 (dashed)

HKW/6

HKW/15

Vink & de Koter 2005 : VK05
(mass loss rate for WN stars)


