Consequences of Mass Loss on the Final Fates of Massive Stars

Dorottya Szécsi Norbert Langer, Sung-Chul Yoon, Debashis Sanyal, Nicolas Gonzalez-Jimenez

Argelander-Institut für Astronomie

Fast Outflows in Massive Stars EWASS 2014 (Symposia 7) – 30th June 2014

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

- model atmospheres with different L_* , M_* , T_{eff} , v_{∞}/v_{esc} (Vink et al. 2000)
- OR spectral analyses

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

- model atmospheres with different L_* , M_* , T_{eff} , v_{∞}/v_{esc} (Vink et al. 2000)
- OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

• OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85X_s + 0.86 \log Z$$

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

• OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85X_s + 0.86 \log Z$$

• *M* is calculated in every step and the corresponding *M* is removed

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

 OR spectral analyses → M as a function of L_{*} etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85X_s + 0.86 \log Z$$

- \dot{M} is calculated in every step and the corresponding M is removed
- \rightarrow fast but approximate

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

• OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85X_s + 0.86 \log Z$$

- *M* is calculated in every step and the corresponding *M* is removed
- \rightarrow fast but approximate
- \rightarrow mass loss rate has a feedback on the evolution!

Yoon et al. 2006: low Z tracks on the HRD

Yoon'06: IGRB and SN progenitors at different Z

Yoon'06: IGRB and SN progenitors at different Z

Progenitors of IGRB and SN Ib/c are WR stars

Progenitors of IGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions \rightarrow

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions →
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions →
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

• *Hamann et al. 1995* reduced by a factor of 10 + Z (Fe) dependence of *Vink et al. 2001* \checkmark

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions →
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al. 1995* reduced by a factor of 10 + Z (Fe) dependence of *Vink et al. 2001* \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$)

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$) ?4

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- Hamann et al. 1995 reduced by a factor of 10 + Z (Fe) dependence of Vink et al. 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$, $f \sim 19 \cdot Z_{CNO}^{surf}$
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$)?
 - How much does it effect the final fate predictions?

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar
- If CNO enh. massloss is unreasonable: more lGRBs and less SNe \rightarrow

IGRB rate of Yoon'06 - REVISED

IGRB rate of Yoon'06 - REVISED

IGRB rate of Yoon'06 - REVISED

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or Hamann et al 1995.

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or *Hamann et al 1995.*

- Purpose of this study:
 - insight into stellar evolution + mass loss
 - how much final fate predictions are changed by mass loss

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or *Hamann et al 1995.*

- Purpose of this study:
 - insight into stellar evolution + mass loss
 - how much final fate predictions are changed by mass loss
- Waiting for comments and questions!

WR wind mass loss rates

Fig. 1. of Yoon & Langer 2005

Wolf-Rayet wind mass loss rates as a function of the stellar luminosity for a given surface composition.

Hamann et al. 1995: HKW95 (solid) Nugis & Lamers 2000: NL00 (dashed)

HKW/6 HKW/15

Vink & de Koter 2005: VK05 (mass loss rate for WN stars)