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A grid of low metallicity single stars

Szécsi et al. 2014 in prep.
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Abundance anomalies observed

in Galactic Clusters (GCs)
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• CNO-cycle, Ne-Na and Mg-Al chains

• either two generations of stars or accretion onto pre-MS low mass stars
(Bastian+ 2013 )

• need: astrophysical source that can pollute the ISM

• caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)

• caveat: material stays inside the grav. potential of the cluster
(e.g. not fast stellar wind)

• AGB stars: hot bottom burning (Ventura+ 2001 )
• fast rotating massive stars: close to break-up (Decressin+ 2007 )
• supermassive stars (104 M�): continuum-driven wind

(Denissenkov+2014 )
• massive binaries: non-conservative mass transfer (De Mink+2009 )
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The massive binary polluter scenario

• interacting binary system, non-conservative mass transfer

• observational evidence for binaries loosing large amount of mass
(see de Mink+ 2007 for a review)

• after H-exhaustion: primary expands, secondary accretes→
spins up

• reaches critical rotation→mass is ejected from the system

• slow ejecta

• deeper layers of primary envelope: nuclearly processed
material!

• hydrogen burning products

• De Mink+2009 : 20 M� + 15 M� + 12 days (∼0.025 Z�)
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• How much mass would they possibly eject?
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A grid of low metallicity single stars

Szécsi et al. 2014 in prep.
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• composition comparable to GCs

• masses between 9-300 M�
• + one (rotating) 575 M� track

• velocities of 0-600 km/s
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=⇒ pair them together one by one

=⇒ estimate the Roche lobe overflow

=⇒ check the corresponding model
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Single star approach:

=⇒ initial orbital separation: A =72 R�
=⇒ take the corresponding (slow rotating)

single stellar tracks

=⇒ approximation of Roche lobe
(Eggleton 1983 ) q =m1/m2:

RL1 = A
0.49q2/3

0.6q2/3 + ln(1 + q1/3)

=⇒ when R1 ≥ RL1: check size and
composition of the primary envelope

10
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Composition and size of primary envelope
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Single star approach

Assumptions:

• τmasstransf er < τmixing , τnucl
• orbit is not (fully) synchronized
• whole envelope is ejected
→ detailed binary simulations still needed

Advantages:
• detailed calculations of single stars are less difficult→

cover a broad parameter space
• in case of simulating binaries: it helps to decide which

masses, mass ratios and periods to simulate and what to
expect

• give constraints on the massive binary polluter scenaro
even without detailed binary simulations
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Single star approach: size of primary envelope
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Summary of the results

• Mg-Al problem – possible solutions:

• ∼100 M� primary losing H-shell burning products

and/or

• the presence of &500 M� primaries in the cluster

• Envelope mass as a function of primary mass:

• assumption of de Mink+09 and Pranczos+Charbonnel’06
is supported by my calculations of single stars

• extended for higher masses (up to ∼575 M�)
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Final notes

Work in progress, first steps presented.

Aims of this talk:
• present GC abundance anom. & massive binary polluters
• present the idea of single star approach
• present my grid of low metallicity single stars

• broad range of masses and rotations
• composition suitable for GCs, dwarf galaxies, high z objects

• give constraints on the envelope mass, test assumptions of
de Mink+09, Bastian+13 X

• test if higher masses / wider periods
could help the Mg-Al problem X

Still need to investigate / question marks:
• mass budget; effects of rotation
• Al – Mg chain: update the reaction rates
• systems interacting at a young age – binary simulations needed

Open to suggestions, comments and questions!
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