Globular Cluster Abundance Anomalies and the Massive Binary Polluter Scenario

Dorottya Szécsi

Nicolas đonzallez-Jimenez
Norbert Langer

Binary systems, their evolution and environments 1-5. September 2014, Ulaan Baatar

A grid of low metallicity single stars

Szécsi et al. 2014 in prep.

A grid of low metallicity single stars

Szécsi et al. 2014 in prep.

Abundance anomalies observed in Galactic Clusters (GCs)

Abundance anomalies observed in GCs

Abundance anomalies observed in GCs

Mg - Al anticorrelation

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, Ne-Na and Mg-Al chains

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)
- caveat: material stays inside the grav. potential of the cluster (e.g. not fast stellar wind)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, Ne -Na and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)
- caveat: material stays inside the grav. potential of the cluster (e.g. not fast stellar wind)
- AGB stars: hot bottom burning (Ventura+2001)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)
- caveat: material stays inside the grav. potential of the cluster (e.g. not fast stellar wind)
- AGB stars: hot bottom burning (Ventura+2001)
- fast rotating massive stars: close to break-up (Decressin+2007)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)
- caveat: material stays inside the grav. potential of the cluster (e.g. not fast stellar wind)
- AGB stars: hot bottom burning (Ventura+2001)
- fast rotating massive stars: close to break-up (Decressin+2007)
- supermassive stars $\left(10^{4} \mathrm{M}_{\odot}\right)$: continuum-driven wind (Denissenkov+2014)

Abundance anomalies observed in GCs

- extreme \& intermediate pop: polluted by hydrogen burning side products
- CNO-cycle, Ne -Na and Mg -Al chains
- either two generations of stars or accretion onto pre-MS low mass stars (Bastian+ 2013)
- need: astrophysical source that can pollute the ISM
- caveat: only products of CNO-cycle (e.g. not He-burning or SN ejecta)
- caveat: material stays inside the grav. potential of the cluster (e.g. not fast stellar wind)
- AGB stars: hot bottom burning (Ventura+2001)
- fast rotating massive stars: close to break-up (Decressin+2007)
- supermassive stars $\left(10^{4} \mathrm{M}_{\odot}\right)$: continuum-driven wind (Denissenkov+2014)
- massive binaries: non-conservative mass transfer (De Mink+ 2009)

The massive binary polluter scenario

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+ 2007 for a review)

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+ 2007 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+ 2007 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+ 2007 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
- hydrogen burning products

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+ 2007 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
- hydrogen burning products
- De Mink+ 2009: $20 \mathrm{M}_{\odot}+15 \mathrm{M}_{\odot}+12$ days $\left(\sim 0.025 \mathrm{Z}_{\odot}\right)$

The massive binary polluter scenario

The massive binary polluter scenario

The massive binary polluter scenario

The massive binary polluter scenario

$$
\mathrm{m} 1=020 \mathrm{M}_{\odot} \quad \mathrm{m} 2=015 \mathrm{M}_{\odot} \quad \mathrm{p}=12.00 \mathrm{~d}
$$

de Mink et al. 2009

Other systems?

More massive systems...

Other systems?

More massive systems...

- How much mass would they possibly eject?

Other systems?

More massive systems...

- How much mass would they possibly eject?
- Would their ejecta composition reproduce the observed anticorrelations?

Other systems?

More massive systems...

- How much mass would they possibly eject?
- Would their ejecta composition reproduce the observed anticorrelations?

A grid of low metallicity single stars...

A grid of low metallicity single stars

Szécsi et al. 2014 in prep.

A grid of low metallicity single stars

Single star approach
to the Massive Binary Polluter Scenario

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Single star approach

Szécsi et al. 2014 in prep.

Composition and size of primary envelope

Composition and size of primary envelope

Composition and size of primary envelope

Single star approach

Assumptions:

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{\text {nucl }}$

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{\text {nucl }}$
- orbit is not (fully) synchronized
- whole envelope is ejected

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect
- give constraints on the massive binary polluter scenaro even without detailed binary simulations

Single star approach: size of primary envelope

Compared to observations:
O - Na anticorrelation

Compared to observations: O - Na anticorr.

Compared to observations: O - Na anticorr.

Compared to observations: O - Na anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations:

 Mg - Al anticorrelationCompared to observations: $\mathrm{Mg}-\mathrm{Al}$ anticorr.

Compared to observations: $\mathrm{Mg}-\mathrm{Al}$ anticorr.

Compared to observations: $\mathrm{Mg}-\mathrm{Al}$ anticorr.

Compared to observations: Mg - Al anticorr.

Compared to observations: Mg - Al anticorr.

Summary of the results

- Mg-Al problem - possible solutions:

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H -shell burning products

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H -shell burning products and/or

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H -shell burning products and/or
- the presence of $\gtrsim \mathbf{5 0 0} \mathbf{M}_{\odot}$ primaries in the cluster

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H-shell burning products and/or
- the presence of $\gtrsim 500 \mathbf{M}_{\odot}$ primaries in the cluster
- Envelope mass as a function of primary mass:

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H -shell burning products and/or
- the presence of $\gtrsim 500 \mathbf{M}_{\odot}$ primaries in the cluster
- Envelope mass as a function of primary mass:
- assumption of de Mink+09 and Pranczos+Charbonnel'06 is supported by my calculations of single stars

Summary of the results

- Mg-Al problem - possible solutions:
- $\sim \mathbf{1 0 0} \mathbf{M}_{\odot}$ primary losing H-shell burning products and/or
- the presence of $\gtrsim \mathbf{5 0 0} \mathbf{M}_{\odot}$ primaries in the cluster
- Envelope mass as a function of primary mass:
- assumption of de Mink+09 and Pranczos+Charbonnel'06 is supported by my calculations of single stars
- extended for higher masses (up to $\sim 575 \mathrm{M}_{\odot}$)

Final notes

Work in progress, first steps presented.

Final notes

Work in progress, first steps presented. Aims of this talk:

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark
- test if higher masses / wider periods could help the Mg-Al problem

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark
- test if higher masses / wider periods could help the Mg-Al problem \checkmark

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark
- test if higher masses / wider periods could help the Mg-Al problem \checkmark
Still need to investigate / question marks:
- mass budget; effects of rotation
- $\mathrm{Al}-\mathrm{Mg}$ chain: update the reaction rates
- systems interacting at a young age - binary simulations needed

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark
- test if higher masses / wider periods could help the Mg-Al problem \checkmark
Still need to investigate / question marks:
- mass budget; effects of rotation
- $\mathrm{Al}-\mathrm{Mg}$ chain: update the reaction rates
- systems interacting at a young age - binary simulations needed

Open to suggestions, comments and questions!

Final notes

Work in progress, first steps presented. Aims of this talk:

- present GC abundance anom. \& massive binary polluters
- present the idea of single star approach
- present my grid of low metallicity single stars
- broad range of masses and rotations
- composition suitable for GCs, dwarf galaxies, high z objects
- give constraints on the envelope mass, test assumptions of de Mink+09, Bastian+13 \checkmark
- test if higher masses / wider periods could help the Mg-Al problem \checkmark
Still need to investigate / question marks:
Thank you for your attention!
- mass budget; effects of rotation
- $\mathrm{Al}-\mathrm{Mg}$ chain: update the reaction rates
- systems interacting at a young age - binary simulations needed

Open to suggestions, comments and questions!

