Fast rotating massive stars at low metallicity: WR stars?

Dorottya Szécsi

Collaborators: Norbert Langer, Sung-Chul Yoon, Debashis Sanyal, Selma de Mink, Chris J. Evans, Joachim Bestenlehner, Françoise Raucq Argelander-Institut für Astronomie

Wolf-Rayet Workshop 3rd June 2015, Potsdam

LK-

• fast rotators at low metallicity (Z=1/50 Z_{\odot})

- fast rotators at low metallicity (Z=1/50 Z_{\odot})
- 10% or more stars can be effected by Chem. Homogeneous Evolution

- fast rotators at low metallicity (Z=1/50 Z_{\odot})
- 10% or more stars can be effected by Chem. Homogeneous Evolution
- $\log(L/L_{\odot})=up$ to 7
- T_{eff}=up to 80 000 K

- fast rotators at low metallicity (Z=1/50 Z_{\odot})
- 10% or more stars can be effected by Chem. Homogeneous Evolution
- $\log(L/L_{\odot})=up$ to 7
- T_{eff}=up to 80 000 K
- wind optical depth 0.05 < τ < 1 during most of the core H burning lifetime

- fast rotators at low metallicity (Z=1/50 Z_{\odot})
- 10% or more stars can be effected by Chem. Homogeneous Evolution
- $\log(L/L_{\odot})=up$ to 7
- T_{eff}=up to 80 000 K
- wind optical depth 0.05 < τ < 1 during most of the core H burning lifetime
- IGRB in the collapsar scenario

- fast rotators at low metallicity (Z=1/50 Z_{\odot})
- 10% or more stars can be effected by Chem. Homogeneous Evolution
- $\log(L/L_{\odot})=up$ to 7
- T_{eff}=up to 80 000 K
- wind optical depth 0.05 < τ < 1 during most of the core H burning lifetime
- IGRB in the collapsar scenario
- photoionization!

Do TWUIN stars exist?

I Zwicky 18

- Blue Compact Dwarf Galaxy
- $18 \text{ Mpc} \rightarrow \text{local}$
- SFR: 0.1-1 M_☉/yr
- ionized gas
- low metallicity: 12+log(O/H)=7.17 ↓ Z=1/50 Z_☉ ≈ 0.0002

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Do TWUIN stars exist?

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 18 Mpc \rightarrow local
- SFR: 0.1-1 M_☉/yr
- ionized gas
- low metallicity: 12+log(O/H)=7.17 ↓ Z=1/50 Z_☉ ≈ 0.0002

Photoionization

 $Q(\text{He II})^{obs} =$ 10⁵⁰ photons s⁻¹

+ weak WR features

(Kehrig+15,Crowther+06)

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Shirazi+12, Kehrig+15, Heap+15

Shirazi+12, Kehrig+15, Heap+15

Shirazi+12, Kehrig+15, Heap+15

Shirazi+12, Kehrig+15, Heap+15

Post-MS phase of TWUIN stars

Observation

He II photons (Shirazi+12, Kehrig+15)

Observation

He II photons (*Shirazi+12, Kehrig+15*)

Observation

lGRBs (Fruchter+08, Niino'11)

Appendix: The grid of low-Z stellar models

Appendix: The grid of low-Z stellar models

Appendix: Comparison to previous models

Appendix: Comparison to previous models

Appendix: Validity of the BlackBody approxim.

Appendix: Initial Composition

