What if massive stars could produce lithium?

Dorottya Szécsi

Humboldt Fellow at the University of Cologne

T ~ 4000 K

Lithium in the Universe Observatory of Rome, 19th November 2019

What if massive stars could produce lithium?

Dorottya Szécsi

Humboldt Fellow at the University of Cologne

Lithium in the Universe Observatory of Rome, 19th November 2019

What if massive stars could produce lithium?

Dorottya Szécsi

Humboldt Fellow at the University of Cologne

Lithium in the Universe Observatory of Rome, 19th November 2019

massive: > 8 times the Sun - rare but influential

massive: > 8 times the Sun - rare but influential

Solar Z_{\odot}

Metal-poor: new types predicted

e.g. Szécsi+15, Szécsi+18, Szécsi+19

massive: > 8 times the Sun - rare but influential

Solar Z_{\odot}

Metal-poor: new types predicted

They eject material via

- supernovae
- stellar winds
- binary interaction

e.g. Szécsi+15, Szécsi+18, Szécsi+19

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

Globular clusters' formation \rightarrow multiple populations

fast rotating stars (e.g. Decressin+07)

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

- fast rotating stars (e.g. Decressin+07)
- non-conservative mass transfer in binaries (e.g. de Mink+09, Bastian+13)

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

- fast rotating stars (e.g. Decressin+07)
- non-conservative mass transfer in binaries (e.g. de Mink+09, Bastian+13)
- Asymptotic Giant Branch stars (not 'massive') (e.g. Charbonnel+00)

Stellar wind's composition \rightarrow nuclear burning products (hydrostatic burning! e.g. CNO-cycle, NeNa-cycle)

Caveats: radiational conditions... material needs to cool

Theories:

- fast rotating stars (e.g. Decressin+07)
- non-conservative mass transfer in binaries (e.g. de Mink+09, Bastian+13)
- Asymptotic Giant Branch stars (not 'massive') (e.g. Charbonnel+00)
- cool supergiants (e.g. <u>Szécsi</u>+18,19)

Hydrostatic burning at $\gtrsim 10^6~K \rightarrow$ destroys Li

Hydrostatic burning at $\gtrsim 10^6 \text{ K} \rightarrow \text{destroys Li}$

Second generation stars in Glob.clusters should not have Li

Hydrostatic burning at $\gtrsim 10^6 \text{ K} \rightarrow \text{destroys Li}$

Second generation stars in Glob.clusters should not have Li

- \rightarrow Li+O should be correlated
- \rightarrow Li+Na should be anti-correlated
 - (cause NaNe-cycle burns O into Na)

Hydrostatic burning at $\gtrsim 10^6 \text{ K} \rightarrow \text{destroys Li}$

Second generation stars in Glob.clusters should not have Li

 \rightarrow Li+O should be correlated

- \rightarrow Li+Na should be anti-correlated
 - (cause NaNe-cycle burns O into Na)

e.g. D'Orazi+10 D'Orazi & Marino'10 Shen+10 Ventura+12 Salaris & Cassisi'14 D'Orazi+15 Mucciarelli+18 Monaco'19

HOWEVER:

Hydrostatic burning at $\gtrsim 10^6 \text{ K} \rightarrow \text{destroys Li}$

Second generation stars in Glob.clusters should not have Li

- \rightarrow Li+O should be correlated
- → Li+Na should be anti-correlated

(cause NaNe-cycle burns O into Na)

e.g. D'Orazi+10 D'Orazi & Marino'10 Shen+10 Ventura+12 Salaris & Cassisi'14 D'Orazi+15 Mucciarelli+18 Monaco'19

HOWEVER:

<u>Szécsi</u> et al. (2015, A&A) <u>Szécsi</u>, Mackey & Langer (2018, A&A) <u>Szécsi</u> & Wünsch (2019, ApJ)

<u>Szécsi</u> et al. (2015, A&A) <u>Szécsi</u>, Mackey & Langer (2018, A&A) <u>Szécsi</u> & Wünsch (2019, ApJ)

predicted the existence of cool, luminous supergiant stars at low Z_{\odot}

<u>Szécsi</u> et al. (2015, A&A) <u>Szécsi</u>, Mackey & Langer (2018, A&A) <u>Szécsi</u> & Wünsch (2019, ApJ)

showed that their ejecta reproduces Glob.cluster pollution patterns

<u>Szécsi</u> et al. (2015, A&A) <u>Szécsi</u>, Mackey & Langer (2018, A&A) <u>Szécsi</u> & Wünsch (2019, ApJ)

predicted the existence of cool, luminous supergiant stars at low Z_{\odot}

showed that their ejecta reproduces Glob.cluster pollution patterns

simulated populations of them forming the 2nd generation in Glob.clusters

Bennett, MSc Thesis (2018)