Globular Cluster Abundance Anomalies and the Massive Binary Polluter Scenario

Dorottya Szécsi

Argelander-Institut für Astronomie

Amsterdam 1. April 2016

Abundance anomalies observed in Galactic Clusters (GCs)

- extreme & intermediate pop: **polluted** by hot hydrogen burning
 - CNO-cycle, Ne-Na and Mg-Al chains

- extreme & intermediate pop: polluted by hot hydrogen burning
 - CNO-cycle, Ne-Na and Mg-Al chains
- need: astrophysical source that can pollute the ISM

- extreme & intermediate pop: polluted by hot hydrogen burning
 - CNO-cycle, Ne-Na and Mg-Al chains
- need: astrophysical source that can pollute the ISM
 - new stars form from the polluted material (*Palous+2014*)
 - accretion onto pre-MS low mass stars (Bastian+2013)

- extreme & intermediate pop: polluted by hot hydrogen burning
 - CNO-cycle, Ne-Na and Mg-Al chains
- need: astrophysical source that can pollute the ISM
 - new stars form from the polluted material (*Palous+2014*)
 - accretion onto pre-MS low mass stars (Bastian+2013)
 - AGB stars: hot bottom burning (Ventura+2001)
 - fast rotating massive stars: close to break-up (Decressin+ 2007)
 - supermassive stars (10⁴ M_☉): continuum-driven wind (*Denissenkov+ 2014*)
 - massive binaries: non-conservative mass transfer (de Mink+ 2009)

interacting binary system, non-conservative mass transfer

- interacting binary system, non-conservative mass transfer
 - observational evidence for binaries loosing large amount of mass (see *de Mink+2009* for a review)

- interacting binary system, non-conservative mass transfer
 - observational evidence for binaries loosing large amount of mass (see *de Mink+2009* for a review)
- after H-exhaustion: primary expands, secondary accretes → spins up

- interacting binary system, non-conservative mass transfer
 - observational evidence for binaries loosing large amount of mass (see *de Mink+2009* for a review)
- after H-exhaustion: primary expands, secondary accretes → spins up
- reaches critical rotation \rightarrow mass is ejected from the system
 - slow ejecta

- interacting binary system, non-conservative mass transfer
 - observational evidence for binaries loosing large amount of mass (see *de Mink+2009* for a review)
- after H-exhaustion: primary expands, secondary accretes → spins up
- reaches critical rotation \rightarrow mass is ejected from the system
 - slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
 - hydrogen burning products

- interacting binary system, non-conservative mass transfer
 - observational evidence for binaries loosing large amount of mass (see *de Mink+2009* for a review)
- after H-exhaustion: primary expands, secondary accretes → spins up
- reaches critical rotation \rightarrow mass is ejected from the system
 - slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
 - hydrogen burning products
- *De Mink*+ 2009: **20** M_☉ + **15** M_☉ + **12** days ([Fe/H]=−1.5)

Other systems?

More massive systems...

Other systems?

More massive systems...

• How much mass would they possibly eject?

More massive systems...

- How much mass would they possibly eject?
- Would their ejecta composition reproduce the observed anticorrelations?

to the Massive Binary Polluter Scenario

A grid of low metallicity single stars

A grid of low metallicity single stars

Compared to observations:

O – Na anticorrelation

Assumptions:

• $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected
 → detailed *binary* simulations still needed

Assumptions:

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected
 → detailed *binary* simulations still needed

Advantages:

Assumptions:

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected
 - \rightarrow detailed *binary* simulations still needed

Advantages:

 detailed calculations of single stars are less difficult → cover a broad parameter space

Assumptions:

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected
 - \rightarrow detailed *binary* simulations still needed

Advantages:

- detailed calculations of single stars are less difficult → cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect

Assumptions:

- $\tau_{masstransfer} < \tau_{mixing}, \tau_{nucl}$
- orbit is not (fully) synchronized
- whole envelope is ejected
 - \rightarrow detailed *binary* simulations still needed

Advantages:

- detailed calculations of single stars are less difficult → cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect
- give constraints on the massive binary polluter scenaro even without detailed binary simulations