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Abundance anomalies observed

in Galactic Clusters (GCs)



Globular Clusters & Abundance Anomalies

Composition of most
Globular Clusters:

[Fe/H] ≈ –1.5...–2.0

(Gratton+04 )
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• extreme & intermediate pop: polluted by hot hydrogen burning

• CNO-cycle, Ne-Na and Mg-Al chains

• need: astrophysical source that can pollute the ISM

• new stars form from the polluted material (Palous+2014 )
• accretion onto pre-MS low mass stars (Bastian+2013 )

• AGB stars: hot bottom burning (Ventura+2001 )
• fast rotating massive stars: close to break-up

(Decressin+2007 )
• supermassive stars (104 M�): continuum-driven wind

(Denissenkov+2014 )
• massive binaries: non-conservative mass transfer

(de Mink+2009 )

→ New scenario...
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The massive binary polluter scenario

• interacting binary system, non-conservative mass transfer

• observational evidence for binaries loosing large amount of mass
(see de Mink+2009 for a review)

• after H-exhaustion: primary expands, secondary accretes→
spins up

• reaches critical rotation→mass is ejected from the system

• slow ejecta

• deeper layers of primary envelope: nuclearly processed
material!

• hydrogen burning products

• De Mink+2009 : 20 M� + 15 M� + 12 days ([Fe/H]=−1.5)
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Other systems?

More massive systems...

• How much mass would they possibly eject?
• Would their ejecta composition reproduce the observed

anticorrelations?

A grid of low metallicity single stars...
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Single star approach

to the Massive Binary Polluter Scenario



A grid of low metallicity single stars

Szécsi et al. 2015
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→ comparable to GCs

• masses between 9-300 M�
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Compared to observations:

O – Na anticorrelation
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Single star approach

Assumptions:

• τmasstransf er < τmixing , τnucl
• orbit is not (fully) synchronized
• whole envelope is ejected
→ detailed binary simulations still needed

Advantages:
• detailed calculations of single stars are less difficult→

cover a broad parameter space
• in case of simulating binaries: it helps to decide which

masses, mass ratios and periods to simulate and what to
expect

• give constraints on the massive binary polluter scenaro
even without detailed binary simulations
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