Globular Cluster Abundance Anomalies and the Massive Binary Polluter Scenario

Abundance anomalies observed in Galactic Clusters (GCs)

Globular Clusters \& Abundance Anomalies

Globular Clusters \& Abundance Anomalies

Mg - Al anticorrelation
Globular clusters

Globular Clusters \& Abundance Anomalies

- extreme \& intermediate pop: polluted by hot hydrogen burning
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and $\mathrm{Mg}-\mathrm{Al}$ chains

Globular Clusters \& Abundance Anomalies

- extreme \& intermediate pop: polluted by hot hydrogen burning
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and $\mathrm{Mg}-\mathrm{Al}$ chains
- need: astrophysical source that can pollute the ISM

Globular Clusters \& Abundance Anomalies

- extreme \& intermediate pop: polluted by hot hydrogen burning
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and $\mathrm{Mg}-\mathrm{Al}$ chains
- need: astrophysical source that can pollute the ISM
- new stars form from the polluted material (Palous+2014)
- accretion onto pre-MS low mass stars (Bastian+ 2013)

Globular Clusters \& Abundance Anomalies

- extreme \& intermediate pop: polluted by hot hydrogen burning
- CNO-cycle, $\mathrm{Ne}-\mathrm{Na}$ and $\mathrm{Mg}-\mathrm{Al}$ chains
- need: astrophysical source that can pollute the ISM
- new stars form from the polluted material (Palous+2014)
- accretion onto pre-MS low mass stars (Bastian+ 2013)
- AGB stars: hot bottom burning (Ventura+ 2001)
- fast rotating massive stars: close to break-up (Decressin+ 2007)
- supermassive stars $\left(10^{4} \mathrm{M}_{\odot}\right)$: continuum-driven wind (Denissenkov+ 2014)
- massive binaries: non-conservative mass transfer (de Mink+ 2009)

The massive binary polluter scenario

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+2009 for a review)

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+2009 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+2009 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+2009 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
- hydrogen burning products

The massive binary polluter scenario

- interacting binary system, non-conservative mass transfer
- observational evidence for binaries loosing large amount of mass (see de Mink+2009 for a review)
- after H-exhaustion: primary expands, secondary accretes \rightarrow spins up
- reaches critical rotation \rightarrow mass is ejected from the system
- slow ejecta
- deeper layers of primary envelope: nuclearly processed material!
- hydrogen burning products
- De Mink+ 2009: $20 \mathrm{M}_{\odot}+15 \mathrm{M}_{\odot}+12$ days $([\mathrm{Fe} / \mathrm{H}]=-1.5)$

Other systems?

More massive systems...

Other systems?

More massive systems...

- How much mass would they possibly eject?

Other systems?

More massive systems...

- How much mass would they possibly eject?
- Would their ejecta composition reproduce the observed anticorrelations?

Single star approach
to the Massive Binary Polluter Scenario

A grid of low metallicity single stars

Szécsi et al. 2015

A grid of low metallicity single stars

Compared to observations:
O - Na anticorrelation

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Compared to observations: $\mathrm{O}-\mathrm{Na}$ anticorr.

Single star approach

Assumptions:

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{\text {nucl }}$

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{\text {nucl }}$
- orbit is not (fully) synchronized
- whole envelope is ejected

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{\text {nucl }}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect

Single star approach

Assumptions:

- $\tau_{\text {masstransfer }}<\tau_{\text {mixing }}, \tau_{n u c l}$
- orbit is not (fully) synchronized
- whole envelope is ejected
\rightarrow detailed binary simulations still needed
Advantages:
- detailed calculations of single stars are less difficult \rightarrow cover a broad parameter space
- in case of simulating binaries: it helps to decide which masses, mass ratios and periods to simulate and what to expect
- give constraints on the massive binary polluter scenaro even without detailed binary simulations

