Massive stars in the metal-poor Universe Resarch Experiences and Plans

Dr. Dorottya Szécsi

Massive stars with Z < 0.1 Z_{\odot}

Cosmic explosions (GRBs, SNe, GW...)

Massive stars with Z $< 0.1~Z_{\odot}$

Cosmic explosions (GRBs, SNe, GW...)

In the Milky Way...

47 Tucanae (Globular Cluster)

Close enough...

I Zwicky 18 (dwarf galaxy)

The theory of the Yeti...

The theory of the Yeti...

PhD: The evolution of low-Z massive stars

T ~ 15 000 K

T ~ 80 000 K

3.5 - core He-burn			$L \sim 0.02 L_{\odot}$						
5.2	5	4.8	4.6	4.4	4.2	4	3.8	3.6	
				log(T _{eff} /K))				

$$\frac{\partial r}{\partial m_r} = \frac{1}{4\pi r^2 \rho} \quad \text{equation of definition of mass} \qquad (9)$$

$$\frac{\partial P}{\partial m_r} = -\frac{Gm_r}{4\pi r^4} \quad \text{equation of hydrostatic equilibrium} \qquad (10)$$

$$\frac{\partial L_r}{\partial m_r} = \epsilon_{\text{pl}} - T \frac{\partial S}{\partial t} \quad \text{equation of energetic balance} \qquad (11)$$

$$\frac{\partial T}{\partial m_r} = -\frac{Gm_r T}{4\pi r^4 P} \nabla \quad \text{equation of energy transport,} \qquad (12)$$

$$\frac{\partial r}{\partial m_r} = \frac{1}{4\pi r^2 \rho} \quad \text{ed} \quad \text{mass conservation} \tag{9}$$

$$\frac{\partial P}{\partial m_r} = -\frac{Gm_r}{4\pi r^4} \quad \text{equation of hydrostatic equilibrium} \tag{10}$$

$$\frac{\partial L_r}{\partial m_r} = \epsilon_{\text{pl}} - T \frac{\partial S}{\partial t} \quad \text{equation of energetic balance} \tag{11}$$

$$\frac{\partial T}{\partial m_r} = -\frac{Gm_r T}{4\pi r^4 P} \nabla \quad \text{equation of energy transport,} \tag{12}$$

Guilera et al. 2011

composition change due to nuclear burning ?!

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

+ Rotation.

+ Rotation.

Massive stars: \geq 9 times the Sun (\geq 9 M_{\odot})

Massive stars: \geq 9 times the Sun (\geq 9 M_{\odot})

nuclear reactions, final composition

Massive stars: \geq 9 times the Sun (\geq 9 M_{\odot})

- nuclear reactions, final composition
- number of stars: massive stars are rare

Massive stars: \geq 9 times the Sun (\geq 9 M_{\odot})

- nuclear reactions, final composition
- number of stars: massive stars are rare
- lifetime: massive stars have shorter lives

Massive stars: $\gtrsim 9$ times the Sun ($\gtrsim 9 M_{\odot}$)

- nuclear reactions, final composition
- number of stars: massive stars are rare
- lifetime: massive stars have shorter lives
- final fate

Matching theory to observations

Surface properties!

Matching theory to observations

Surface properties! \rightarrow temperature (i.e. colour) X axis \rightarrow luminosity (i.e. brightness) Y axis

Matching theory to observations

Surface properties! \rightarrow temperature (i.e. colour) X axis \rightarrow luminosity (i.e. brightness) Y axis

Hertzsprung-Russell diagram (HR diagram)

Hertzsprung-Russell diagram

Groh et al. 2013

Hertzsprung-Russell diagram

Groh et al. 2013

Hertzsprung-Russell diagram

Groh et al. 2013

Low Metallicity Massive Stars
– my thesis 🙂

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

The theory of the Yeti...

The theory of the Yeti...

6

Back to IZw 18

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 60 million lightyears
 → local
- star formation rate: $0.1 \text{ M}_{\odot}/\text{yr}$
- ionized gas
- low metallicity: $Z=1/50 Z_{\odot}$

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Back to IZw 18

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 60 million lightyears
 → local
- star formation rate: $0.1 M_{\odot}/yr$
- ionized gas
- low metallicity: $Z=1/50 Z_{\odot}$

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Supergiants and globular clusters

Globular clusters:

multiple stellar populations observed

Supergiants and globular clusters

The theory of the Yeti...

Globular Clusters & Abundance Anomalies

New scenario: Starforming Supergiant Shells

PICO shell: Mackey+2014 (Nature)

So I went to do my 1st postdoc in Prague...

Wünsch (AsU CAS)

Globular clusters and stellar winds

28.6.2018 4 / 16

The BEC interface

Dorottya Szécsi Argelander-Institut für Astronomie

June 12, 2014

The BEC interface: beci

BEC = Binary Evolutionary Code

- single and binary stellar systems
- with or without rotation
- developed since the 1970s in Fortran
- very powerful!
- ...but difficult to use

beci = the interface for BEC

- automatized + documented
- easy to learn and use
- transferable, extensible
- and more...

Basic commands 1.

Run a new single stellar evolutionary model

WORKDIR/BEC\$./beci -single 20 0.8 50 lmc -run

 M_{ini} =20 M_{\odot} Z=0.8* Z_{LMC} v_{ini} =50 km/s

Check its status

./beci -single 20 0.8 50 lmc -v1

Create a HRD

./beci -single 20 0.8 50 lmc -visualize -HRD

Create a Kippenhahn diagram

./beci -single 20 0.8 50 lmc -visualize -kippenhahn

Basic commands 2.

./beci -single 20 0.8 50 lmc -visualize -composition

Basic commands: -composition

More options for single stars in the Manual

- -normal
- -extended
- -savetozams
- -comeclean
- -obsHRD
- -recipes
- -structure
- -elements
- -YcYs
- -yield
- -angmom
- -PISN

Also see the -help command!

So what about binaries?

Run a new binary stellar evolutionary model

./beci -binary 050 025 1.0 20.00 smc -run

 M^{P}_{ini} =50 M_o M^{S}_{ini} =25 M_o Z=1.0*Z_{SMC} p_{ini} =20 days

Check their status

./beci -binary 050 025 1.0 20.00 smc -v1 -v2 -v3

Visualize them on the HRD and Orbit diagram

./beci -binary 050 025 1.0 20.00 smc -visualize

More options for binary stars in the Manual:

 -mdat -continue -normal -kippenhahn -composition -recipes -structure -help

...and more

The 'Orbit' diagram

APP E KENKEN A

The 'Orbit' diagram - after RLOF

マック ヨー・ヨー・ キョ

Handling large grids of stars

Grids created by BEC:

- Yoon et al. 2006, 2012 (low Z, Pop.III)
- Brott et al. 2011 (MW, LMC, SMC)
- Köhler et al. 2014 (LMC)
- Szécsi et al. 2014 (IZw18)

Common HRD of all stars in the grid

./beci -grid NameOfGrid -gridHRD

More grid commands are available, see the Manual or call

./beci -help -grid

Handling large grids of stars: -gridHRD

A B A B A B A O A C
Write your own script!

./beci -single 20 0.8 50 lmc -myscript -coolscript Dori

```
##coolscript.sh
echo "Hi dear friend $1!"
echo "You are working with the star
M=$m Msun - z=$z x Z_$g - v=$v km/s in $path_BEC/bin"
endMS=`cat ./m$m-z$z-v$v.$g/$m-$z.plot1 | sed 's/D/E/g' | awk '
BEGIN{max=0}{if($3>max){max=$3;tmax=$1}} END{print tmax}'`
endMSMyr=`echo $endMS | awk '{printf "%1.3f", $1/1000000 }'`
echo "Main sequence lifetime: $endMSMyr Myr"
echo "Bye! :)"
```

Result

```
Hi dear friend Dori!
You are working with the star
M=20 Msun - z=0.8 x Z_lmc - v=50 km/s in $WORKDIR/BEC/bin
Main sequence lifetime: 7.886 Myr
Bye! :)
```

Thank you for your attention!

Program files are available here:

/vol/cstorage/raid18/dorottya/BECinterface

Copy the files in your \$WORKDIR and call

./beci -setup

Please try it and find bugs!