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Stellar evolution + mass loss recipes

Stellar evolutionary tracks
• hydrodynamic simulation of an

isolated, rotating gas sphere (= star )

• nuclear burning, 1D

• Hertzsprung–Russell diagram:
Tef f vs. Luminosity (log)  4.6
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Mass loss on the top of it
• model atmospheres with different L∗, M∗, Tef f , v∞/vesc (Vink et al. 2000 )

• OR spectral analyses→ Ṁ as a function of L∗ etc. fitted (= "mass loss recipe
e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription" )

logṀ = −11.95 + 1.5log
L∗
L

+ 2.85Xs + 0.86logZ

• Ṁ is calculated in every step and the corresponding M is removed

→ fast but approximate
→mass loss rate has a feedback on the evolution!
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logṀ = −11.95 + 1.5log
L∗
L

+ 2.85Xs + 0.86logZ
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Yoon et al. 2006 : low Z tracks on the HRD
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Yoon’06 : lGRB and SN progenitors at different Z
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The infamous Wolf–Rayet mass loss

Progenitors of lGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions→

• mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution
...and on the final fate too!

Mass loss recipes used in Yoon’06 for WR stars

• Hamann et al. 1995 reduced by a factor of 10
+ Z (Fe) dependence of Vink et al. 2001 �

• enhanced mass loss due to CNO in the surface: Ṁ = f · ṀH95,
f ∼ 19 ·Zsurf

CNO• ad-hoc approach
• probably unphysical

(CNO are ionized at Tef f > 105K) ?�
• How much does it effect the final fate predictions?
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With and without CNO enhanced mass loss

67 M� v/vc=0.3 tracks from Szécsi et al. 2014
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Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss
and/or Hamann et al 1995.

• Purpose of this study:
• insight into stellar evolution + mass loss
• how much final fate predictions are changed by mass loss

• Waiting for comments and questions!

Thank you for

your attention
!
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WR wind mass loss rates

Fig. 1. of Yoon & Langer 2005

Wolf-Rayet wind mass loss rates as a
function of the stellar luminosity for a
given surface composition.

Hamann et al. 1995 : HKW95 (solid)
Nugis & Lamers 2000 : NL00 (dashed)

HKW/6

HKW/15

Vink & de Koter 2005 : VK05
(mass loss rate for WN stars)
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The BEC interface: beci

BEC = Binary Evolutionary Code
• single and binary stellar systems
• with or without rotation
• developed since the 1970s in Fortran
• very powerful!
• ...but difficult to use

beci = the interface for BEC
• automatized + documented
• easy to learn and use
• transferable, extensible
• and more...



Basic commands 1.

Run a new single stellar evolutionary model

WORKDIR/BEC$ ./beci -single 20 0.8 50 lmc -run

Mini=20 M� Z=0.8*ZLMC vini=50 km/s
Check its status

./beci -single 20 0.8 50 lmc -v1

Create a HRD

./beci -single 20 0.8 50 lmc -visualize -HRD

Create a Kippenhahn diagram

./beci -single 20 0.8 50 lmc -visualize -kippenhahn



Basic commands 2.

Get help any time

./beci -help

./beci -help -run

Modify the m.dat from the command line

./beci -single 20 0.8 50 lmc -mdat IOUT=20 DTMIN_1=1.0d0

Continue a stopped calculation

./beci -single 20 0.8 50 lmc -continue

Create an animation of the composition change

./beci -single 20 0.8 50 lmc -visualize -composition



Basic commands: -composition



More options for single stars in the Manual

• -normal

• -extended

• -savetozams

• -comeclean

• -obsHRD

• -recipes

• -structure

• -elements

• -YcYs

• -yield

• -angmom

• -PISN

Also see the -help

command!

Manual of the BEC interface

Dorottya Szécsi
Argelander-Institut für Astronomie

June 2, 2014



So what about binaries?

Run a new binary stellar evolutionary model

./beci -binary 050 025 1.0 20.00 smc -run

MP
ini=50 M� MS

ini=25 M� Z=1.0*ZSMC pini=20 days

Check their status

./beci -binary 050 025 1.0 20.00 smc -v1 -v2 -v3

Visualize them on the HRD and Orbit diagram

./beci -binary 050 025 1.0 20.00 smc -visualize

More options for binary stars in the Manual:
• -mdat -continue -normal -kippenhahn -composition

-recipes -structure -help



...and more

./beci -binary 050 025 1.0 20.00 smc -visualize -anim



The ’Orbit’ diagram
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The ’Orbit’ diagram - after RLOF
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Handling large grids of stars

Grids created by BEC:
• Yoon et al. 2006, 2012 (low Z, Pop.III)
• Brott et al. 2011 (MW, LMC, SMC)
• Köhler et al. 2014 (LMC)
• Szécsi et al. 2014 (IZw18)

Common HRD of all stars in the grid

./beci -grid NameOfGrid -gridHRD

More grid commands are available, see the Manual or call

./beci -help -grid



Handling large grids of stars: -gridHRD
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Write your own script!

./beci -single 20 0.8 50 lmc -myscript -coolscript Dori

##coolscript.sh

echo "Hi dear friend $1!"

echo "You are working with the star

M=$m Msun - z=$z x Z_$g - v=$v km/s in $path_BEC/bin"

endMS=‘cat ./m$m-z$z-v$v.$g/$m-$z.plot1 | sed ’s/D/E/g’ | awk ’

BEGIN{max=0}{if($3>max){max=$3;tmax=$1}} END{print tmax}’‘

endMSMyr=‘echo $endMS | awk ’{printf "%1.3f", $1/1000000 }’‘

echo "Main sequence lifetime: $endMSMyr Myr"

echo "Bye! :)"

Result

Hi dear friend Dori!

You are working with the star

M=20 Msun - z=0.8 x Z_lmc - v=50 km/s in $WORKDIR/BEC/bin

Main sequence lifetime: 7.886 Myr

Bye! :)



Thank you for your attention!

Program files are available here:

/vol/cstorage/raid18/dorottya/BECinterface

Copy the files in your $WORKDIR and call

./beci -setup

Please try it and

find bugs!
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