Part I: Consequences of Mass Loss on the Final Fates of Massive Stars

Part II: The BEC Interface

Dorottya Szécsi

Argelander-Institut für Astronomie

Group Meeting, Bonn 12. June 2014

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

- model atmospheres with different L_* , M_* , T_{eff} , v_{∞}/v_{esc} (Vink et al. 2000)
- OR spectral analyses

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

• OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

 OR spectral analyses → M as a function of L_{*} etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85 X_s + 0.86 \log Z$$

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

 OR spectral analyses → M as a function of L_{*} etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85 X_s + 0.86 \log Z$$

• *M* is calculated in every step and the corresponding *M* is removed

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

 OR spectral analyses → M as a function of L_{*} etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85 X_s + 0.86 \log Z$$

• \dot{M} is calculated in every step and the corresponding M is removed \rightarrow fast but approximate

Stellar evolutionary tracks

- hydrodynamic simulation of an isolated, rotating gas sphere (= star)
- nuclear burning, 1D
- Hertzsprung–Russell diagram: T_{eff} vs. Luminosity (log)

Mass loss on the top of it

• OR spectral analyses $\rightarrow \dot{M}$ as a function of L_* etc. fitted (= "mass loss recipe e.g. Hamann et al. 1995 (for log(L/L) > 4.5): /prescription")

$$\log \dot{M} = -11.95 + 1.5 \log \frac{L_*}{L} + 2.85X_s + 0.86 \log Z$$

- *M* is calculated in every step and the corresponding *M* is removed
- \rightarrow fast but approximate
- \rightarrow mass loss rate has a feedback on the evolution!

Yoon et al. 2006: low Z tracks on the HRD

Yoon'06: IGRB and SN progenitors at different Z

Yoon'06: IGRB and SN progenitors at different Z

Progenitors of IGRB and SN Ib/c are WR stars

Progenitors of IGRB and SN Ib/c are WR stars

• scarce observations and complicated physical conditions \rightarrow

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

Hamann et al. 1995 reduced by a factor of 10
 + Z (Fe) dependence of Vink et al. 2001

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

• *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$)

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- *Hamann et al.* 1995 reduced by a factor of 10 + Z (Fe) dependence of *Vink et al.* 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$,
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$)?

Progenitors of IGRB and SN Ib/c are WR stars

- scarce observations and complicated physical conditions \rightarrow
- mass loss rate determinations are highly uncertain

Mass loss rate has a feedback on the evolution

...and on the final fate too!

Mass loss recipes used in Yoon'06 for WR stars

- Hamann et al. 1995 reduced by a factor of 10 + Z (Fe) dependence of Vink et al. 2001 \checkmark
- enhanced mass loss due to CNO in the surface: $\dot{M} = f \cdot \dot{M}_{H95}$, $f \sim 19 \cdot Z_{CNO}^{surf}$
 - ad-hoc approach
 - probably unphysical (CNO are ionized at $T_{eff} > 10^5 K$)?
 - How much does it effect the final fate predictions?

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar

With and without CNO enhanced mass loss

67 M_{\odot} v/v_c=0.3 tracks from Szécsi et al. 2014

- IGRB: fast rotating WR star (collapsar model)
- Mass loss \rightarrow angular momentum loss \rightarrow no collapsar
- If CNO enh. massloss is unreasonable: more lGRBs and less SNe \rightarrow

IGRB rate of Yoon'06 - REVISED

IGRB rate of Yoon'06 - REVISED

IGRB rate of Yoon'06 - REVISED

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or *Hamann et al 1995*.

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or *Hamann et al 1995*.

- Purpose of this study:
 - insight into stellar evolution + mass loss
 - how much final fate predictions are changed by mass loss

Final remarks

• Still open question to discuss:

Which WR mass loss prescription is more valid?

CNO enhanced mass loss and/or *Hamann et al 1995*.

- Purpose of this study:
 - insight into stellar evolution + mass loss
 - how much final fate predictions are changed by mass loss
- Waiting for comments and questions!

WR wind mass loss rates

Fig. 1. of Yoon & Langer 2005

Wolf-Rayet wind mass loss rates as a function of the stellar luminosity for a given surface composition.

Hamann et al. 1995: HKW95 (solid) Nugis & Lamers 2000: NL00 (dashed)

HKW/6 HKW/15

Vink & de Koter 2005: VK05 (mass loss rate for WN stars)

The BEC interface

Dorottya Szécsi Argelander-Institut für Astronomie

June 12, 2014

The BEC interface: beci

BEC = Binary Evolutionary Code

- single and binary stellar systems
- with or without rotation
- developed since the 1970s in Fortran
- very powerful!
- ...but difficult to use

beci = the interface for BEC

- automatized + documented
- easy to learn and use
- transferable, extensible
- and more...

Basic commands 1.

Run a new single stellar evolutionary model

WORKDIR/BEC\$./beci -single 20 0.8 50 lmc -run

 M_{ini} =20 M_{\odot} Z=0.8* Z_{LMC} v_{ini} =50 km/s

Check its status

./beci -single 20 0.8 50 lmc -v1

Create a HRD

./beci -single 20 0.8 50 lmc -visualize -HRD

Create a Kippenhahn diagram

./beci -single 20 0.8 50 lmc -visualize -kippenhahn

Basic commands 2.

./beci -single 20 0.8 50 lmc -visualize -composition

Basic commands: -composition

More options for single stars in the Manual

- -normal
- -extended
- -savetozams
- -comeclean
- -obsHRD
- -recipes
- -structure
- -elements
- -YcYs
- -yield
- -angmom
- -PISN

Also see the -help command!

So what about binaries?

Run a new binary stellar evolutionary model

./beci -binary 050 025 1.0 20.00 smc -run

 M^{P}_{ini} =50 M_o M^{S}_{ini} =25 M_o Z=1.0*Z_{SMC} p_{ini} =20 days

Check their status

./beci -binary 050 025 1.0 20.00 smc -v1 -v2 -v3

Visualize them on the HRD and Orbit diagram

./beci -binary 050 025 1.0 20.00 smc -visualize

More options for binary stars in the Manual:

 -mdat -continue -normal -kippenhahn -composition -recipes -structure -help

...and more

The 'Orbit' diagram

APP E KENKEN

The 'Orbit' diagram - after RLOF

マック ヨー・ヨー・ キョ

Handling large grids of stars

Grids created by BEC:

- Yoon et al. 2006, 2012 (low Z, Pop.III)
- Brott et al. 2011 (MW, LMC, SMC)
- Köhler et al. 2014 (LMC)
- Szécsi et al. 2014 (IZw18)

Common HRD of all stars in the grid

./beci -grid NameOfGrid -gridHRD

More grid commands are available, see the Manual or call

./beci -help -grid

Handling large grids of stars: -gridHRD

A B A B A B A O A C

Write your own script!

./beci -single 20 0.8 50 lmc -myscript -coolscript Dori

```
##coolscript.sh
echo "Hi dear friend $1!"
echo "You are working with the star
M=$m Msun - z=$z x Z_$g - v=$v km/s in $path_BEC/bin"
endMS=`cat ./m$m-z$z-v$v.$g/$m-$z.plot1 | sed 's/D/E/g' | awk '
BEGIN{max=0}{if($3>max){max=$3;tmax=$1}} END{print tmax}'`
endMSMyr=`echo $endMS | awk '{printf "%1.3f", $1/1000000 }'`
echo "Main sequence lifetime: $endMSMyr Myr"
echo "Bye! :)"
```

Result

```
Hi dear friend Dori!
You are working with the star
M=20 Msun - z=0.8 x Z_lmc - v=50 km/s in $WORKDIR/BEC/bin
Main sequence lifetime: 7.886 Myr
Bye! :)
```

Thank you for your attention!

Program files are available here:

/vol/cstorage/raid18/dorottya/BECinterface

Copy the files in your \$WORKDIR and call

./beci -setup

Please try it and find bugs!