When gravity meets radiation: the stellar Eddington limit

Dorottya Szécsi Köln, 27. April 2021

What is a star?

$$\frac{\partial r}{\partial m_r} = \frac{1}{4\pi r^2 \rho} \quad \text{equation of definition of mass} \qquad (9)$$

$$\frac{\partial P}{\partial m_r} = -\frac{Gm_r}{4\pi r^4} \quad \text{equation of hydrostatic equilibrium} \qquad (10)$$

$$\frac{\partial L_r}{\partial m_r} = \epsilon_{\text{pl}} - T \frac{\partial S}{\partial t} \quad \text{equation of energetic balance} \qquad (11)$$

$$\frac{\partial T}{\partial m_r} = -\frac{Gm_r T}{4\pi r^4 P} \nabla \quad \text{equation of energy transport,} \qquad (12)$$

$$\frac{\partial r}{\partial m_r} = \frac{1}{4\pi r^2 \rho} \quad \text{ed} \quad \text{mass conservation} \tag{9}$$

$$\frac{\partial P}{\partial m_r} = -\frac{Gm_r}{4\pi r^4} \quad \text{equation of hydrostatic equilibrium} \tag{10}$$

$$\frac{\partial L_r}{\partial m_r} = \epsilon_{\text{pl}} - T \frac{\partial S}{\partial t} \quad \text{equation of energetic balance} \tag{11}$$

$$\frac{\partial T}{\partial m_r} = -\frac{Gm_r T}{4\pi r^4 P} \nabla \quad \text{equation of energy transport,} \tag{12}$$

Guilera et al. 2011

composition change due to nuclear burning ?!

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

+ Rotation.

Matching theory to observations

Surface properties! \rightarrow temperature (i.e. colour) X axis \rightarrow luminosity (i.e. brightness) Y axis

Hertzsprung-Russell diagram (HR diagram)

When the equilibrium is compromized:

the Eddington limit

Other reasons for falling out of equilibrium:

iron core

 \rightarrow gravitational collapse & SN (due to bounce-back)

pair-instability

 \rightarrow grav. collapse & subsequent thermonuclear explosion (PISN) or pulsations (puls-PISN)

end of a burning phase

 \rightarrow restructuring, crossing the Herzsprung-gap...

Eddington limit

Credit: Stan Owocki

Consequences for the stellar interior

- density (and pressure) <u>inversion</u> in the envelope
- no efficient energy transport mechanism here (weak convection)
- → envelope "<u>inflation</u>"
 numerical difficulties...

density inversion:

credit: Götz Gräfener

Is there a solution?

- several "tricks" in the literature
 - various codes use various tricks & methods
 - cf. Szécsi & Agrawal (2021, submitted)
- PARSEC ('Padova') artificially limiting the temp. gradient
- MIST (MESA)

'Geneva'

• **BPASS**

MLT++ formalism *(limiting the superadiabacity*)* =changing how convection** is treated **a type of internal mixing

*difference between the isothermal and adiabatic temperature gradient

artificially enhanced mass loss at the right moment

BoOST ('Bonn')

inflated envelope & post-processing with 'normal' mass loss

Szécsi & Agrawal (2021, submitted)

Table 1. Ionizing photon number flux $[s^{-1}]$ in the Lyman continuum emitted *on average* by the stellar models during their lives, cf. Sect. 2.3. The last column provides the amount of Lyman radiation (number of photons $[s^{-1}]$) that a 10⁷ M_{\odot} population (e.g. a starburst galaxy or a young massive cluster in the Milky Way) containing these massive stars would emit.

$\rm M_{ini}~[M_{\odot}]$	24/25	40	80/85	120/125	pop.
PARSEC MIST	3.7e48	1.3e49 1.5e49	5.5e49 5.1e49	1.0e50 1.1e50	1.08e54
Geneva	3.5e48	1.2e49	4.6e49	7.8e49	9.27e53
BPASS BoOST	$\begin{array}{c} 3.6\mathrm{e}48\\ 3.7\mathrm{e}48 \end{array}$	$\begin{array}{c} 1.3\mathrm{e}49\\ 1.2\mathrm{e}49\end{array}$	$\begin{array}{c} 4.5\mathrm{e}49\\ 4.4\mathrm{e}49\end{array}$	$\begin{array}{c} 7.7\mathrm{e49} \\ 7.4\mathrm{e49} \end{array}$	9.34e53 9.14e53

up to 15% difference!

Szécsi & Agrawal (2021, submitted)

Gravitational waves: compact object mergers (e.g. black holes)

Figure 2. Mass of stellar remnant as a function of the initial mass of the star (near-solar composition). Differences in the assumptions in massive star modelling can cause a variation of up to 20 M_{\odot} in the remnant masses between simulations. Choosing to apply one of these simulations over the others in e.g. gravitational-wave event rate predictions can lead to strikingly different results.

up to 20 M_o difference!

Szécsi & Agrawal (2021, submitted)

Take away messages

- Eddington limit is a thing :)
- stellar evolution above 40 M_{\odot} has

not reached consensus

• use stellar models with extra caution, be flexible for updates

Thanks!

