Astrophysics Seminar Introduction to Cosmology *Part 2.*

Dorottya Szécsi

ELTE

8th Oct 2010

Dorottya Szécsi Introduction to Cosmology Part 2.

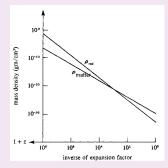
伺 と く ヨ と く ヨ と

Summary of the Previous Lecture I.

- \blacktriangleright Cosmological Principle: $>100~{\rm Mpc}$ Universe is homogeneous and isotropic
- Hydrodynamical approximation:
 - Continuity equation
 - Euler equation
 - Laplace–Poisson equation: $\partial_{ii} U = 4\pi G \rho$
 - Universe cannot be static $\rightarrow \partial_{ii} U + \lambda = 4\pi G \rho$ (Neumann and Seeling)

Friedman equation:
$$\frac{1}{2}\dot{R}^2 - \frac{MG}{R} = E$$
 (energy conservation)

• Scale parameter:
$$a(t) = \frac{R(t)}{R_0}$$


General relativity – Einstein equation, with Schwartzschild metric:

$$\left(\frac{\dot{a}}{a}\right)^2 - \frac{8\pi G}{3}\rho = -\frac{k}{a^2}, \quad k = -1, 0, 1$$

(k = 0 special case: Friedman-Robertson-Walker metric)

Summary of the Previous Lecture II.

Resolving the Friedman equation in the cases k = 1 closed, k = 0 flat, k = -1 open Universe:

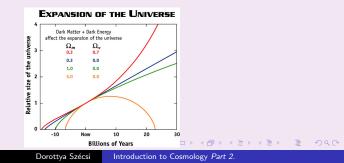
- Cosmical era dominated by matter or radiation:
 - If the space is dominated by non-relativistic moving particles:

$$ho_m\sim rac{1}{a^3},~a(t)\sim t^{2/3}$$

If the space is dominated by relativistic particles (photons, maybe neutrinos):

$$ho_{
m rad} \sim rac{1}{a^4}$$
, $a(t) \sim t^{1/2}$

Cosmological Constant: Λ , Ω_{Λ}


- Observation: expansion of Universe is accelerating
- Laplace–Poisson equation + λ additive contribution: cosmological constant, Λ
- Change of Friedmann equation: ^ä/_a = -^{4πG}/₃ρ + ^Λ/₃
 After integrating and transforming: ¹/₂ (^á/_a)² - ^{4πG}/₃ (ρ_m + ρ_{sug} + ρ_Λ) = -^k/_{2a²}, where ρ_Λ = ^Λ/_{8πG}
 Emphasizing H²(t): ^{H²}/₂ (1 - Ω_m - Ω_{rad} - Ω_Λ) = -^k/_{2a²}, where Ω_Λ = ^λ/_{3H²}
- We take: $1 \Omega_m \Omega_{rad} \Omega_{\Lambda} = \frac{-k}{H^2 a^2} = \Omega_k$
- Ω_k : contribution of space curvature to the energy density

Evolving Universe I.

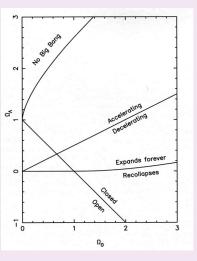
- ► 20th century: $\Omega_{\Lambda} = 0$, $\Omega_{k} = 0$ but measurements prove: $\Omega_{\Lambda} \neq 0$
- Hubble constant is "constant" for all galaxies in a timepoint, but changes in time, because ρ changes with a: ρ_m ~ a⁻³, ρ_{sug} ~ a⁻⁴, ρ_Λ is independent from a ⇒

$$H^{2}(a) = H^{2}_{0}[\Omega_{\Lambda,0} + \Omega_{m,0}a^{-3} + \Omega_{sug,0}a^{-4}]$$

► From measurements: $\Omega_{m,0} \approx 0.3$, $\Omega_{\Lambda,0} \approx 0.7$, $\Omega_{sug,0} \approx 0$. We get the past and future state of the Universe:

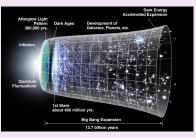
Evolving Universe II.

Now we seek the possible Universes depending from Ω_Λ and Ω_m. Let Ω_k ≠ 0:


$$H^{2}(a) = H_{0}^{2}[\Omega_{\Lambda,0} + \Omega_{m,0}a^{-3} + \Omega_{sug,0}a^{-4} + \Omega_{k,0}a^{-2}]$$

• We neglect the radiation component and replace $1 - \Omega_m - \Omega_\Lambda = \Omega_k$:

$$\frac{H^2(a)}{H_0^2} = [\Omega_{\Lambda,0}(1-a^{-2}) + \Omega_{m,0}(a^{-3}-a^{-2}) + a^{-2}]$$


► It is easy to resolve numerically. The resolution on the $\Omega_m - \Omega_{\Lambda}$ -plane:

Evolving Universe III.

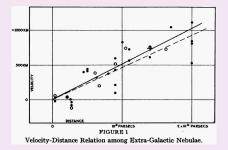
- $\Omega_k = 0 \rightarrow \Omega_m + \Omega_\Lambda = 1$: spacelike flat Universe
- Both cases contain the possibility of Recollapsing and Forever Expanding Universe
- If Ω_Λ is big enough: its repulsive effect withholds the existence of a = 0 in the past
- ► a(t) series expansion: the parabolic member's factor is the *decelerating* parameter, q₀.
 - In our plane, $q_0 = \frac{1}{2}\Omega_m \Omega_{\Lambda}$.
 - With $q_0 = 0$, we get the $\Omega_{\Lambda} = \frac{1}{2}\Omega_m$ line
 - above: accelerating expansion, below: decelerating expansion (if it does not contract)
- ► Our Universe is accelerating new! 🛓 🕤 ର୍ବ୍

Evolving Universe IV.

When the turnout from the decelerating to the accelerating expansion happened: q = 0

$$\blacktriangleright \quad \rightarrow \Omega_{\Lambda} = \frac{1}{2} \Omega_{m}$$

• we know that
$$\Omega_{\Lambda,0} = \frac{1}{2}\Omega_{m,0}a^{-3}$$


► and $\Omega_{\Lambda,0} = 0.7$, $\Omega_{m,0} = 0.3$ now so we get

< ロ > < 同 > < 回 > < 回 > < 回 > <

• $a \approx 0.6$, $\Omega_m \approx 0.67$, $\Omega_\Lambda \approx 0.33$

Evidences of the Theory I.

- Hubble's law (1929):
 - Distant galaxies spectra: lines shift to the red range
 - Redshift: $z = \frac{\lambda \lambda_0}{\lambda} \approx \frac{v}{c}$
 - Many galaxies have been measured: Hubble diagram, v = Hd
 - Cosmological meaning of redshift: $1 + z = \frac{a_0}{a(t)}$

A B > A B >

Evidences of the Theory II.

- ► CBM (1965):
 - Once in great tempearture (> 3000 K), H-atom was not stable, fell apart. Photons could scatter on free electrons and protons.
 - It ended below 3000 K. Protons and electrons recombined to H-atoms, matter became transparent to photons, so they departed from here and we see them now as Cosmic Microwave Background.
 - \blacktriangleright Universe is 1000 times bigger now: photons temperature has to be \sim 3 ${\rm K}.$
- Quantity of light elements:
 - ► There was a time, when nucleus was not stable. Then protons and neutrons combined to H, D, He, Li.
 - But here the process stopped: free path length of the the elements became larger than the distance of the horizon (temperature and pressure decreased).
 - Now we see 75% H and 25% He in the Universe (form astronomical observations). It is precisely the value of the calculation.

Problems I.

Problem of the horizon

• Universe is expanding with $a(t) \sim t^{\frac{2}{3}}$.

$$\blacktriangleright R_{now} = ct_{now}, R_{then} = 0.001R_{now}.$$

$$\frac{R_{then}}{ct_{then}} = \left(\frac{R_{then}}{R_{now}}\right) \left(\frac{R_{now}}{ct_{now}}\right) \left(\frac{ct_{now}}{ct_{then}}\right) = \sqrt{\frac{R_{now}}{R_{then}}} \approx 30$$

- Photons incoming from the opposite site of the horizon could not be in causal relation.
- CMB photons have the similar 2.73 K temperature. How could they thermalize without changing information?

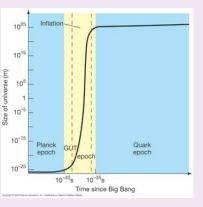
Problems II.

Problem of metric being flat

- $1 \Omega_{total} = \Omega_k = \frac{-k}{H^2 a^2} \approx \frac{1}{\dot{a}^2} \approx t^{\frac{2}{3}} \rightarrow \Omega_{total}$ is going far from 1 with time.
- We have bounds: 0.5 < Ω_{total} < 2.0 (there is enough matter to evolve structures but not enough to begin to contract)
- In the beginning, Ω_{total} must have been 1 with 10⁻³⁰ precision! Why is the metric so precisely flat?
- Problem of conformation of structures
 - On the scale < 100 Mpc, the matter is inhomogenous (stars, galaxies, clusters). We see inhomogenity in the CMB of the order of 10^{-5} . What caused that?

伺 と く ヨ と く ヨ と

Inflation I.

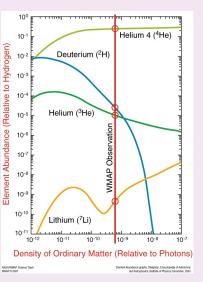

► A. Guth, 1981: before the beginning, there was a primal matter, called *inflaton*, whose density changed slowly (like the cosmological constant). It effected a rapid expansion, where a(t) grew with the order of 30, the second member is irrelevant:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \approx \frac{8\pi G}{3}\rho_{infl} \equiv H_{infl}^2$$

- Resolving the equation: $a_{out} = a_{in}e^{H_{infl}(t_{out}-t_{in})}$
- ▶ In that era, the characteristic scale was the Plack scale, so $a_{in} = R_{Planck}/R_{now} \approx 10^{-61}$, $t_{be} = 10^{-33}$ s
- Universe expanded exponentially and cooled adiabaticly.
- ► Then, the *inflaton* decayed, the Universe warmed up again, and began to evolve by the Friedman equation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Inflation II.



- Inflation solves the problems:
 - Before it, everything was in causal connection. During the inflation, things went out over the horizon, now they come back.
 - Metric could be whatever, after the inflation it is irrelevant, so the Universe can be flat now.
 - Before the inflation, the scale was microscopic and there were quantum fluctuations in the energy density. During the 10⁻³¹ s of the inflation, they grew to macroscopic scale.
- We do not know what happened before the inflation. ("Quantum gravitation theory")

Thermal History of the Universe I.

- Planck time: 10⁻⁴³ s. Before it, we cannot be sure in anything: ΔEΔt ≃ ħ
- ► GUT (Great Unified Theory): t = 10⁻³⁷ s, 10¹⁹ GeV, electroweak and strong interactions are unified, barion-antibarion asimetry
- ► 10² GeV: electroweak interaction divide to electromagnetic and weak interactions. W-Z bosons, quarks, leptons get mass.
- Quarks compose mesons, barions: $t = 10^{-5}$ s, 200 MeV
 - Annihilation of charged particles: pions, muons, electrons
 - Neutrinos had scattered on muons and electrons, now they decouple from the matter (3 · 10¹⁰ K). It heats the Universe.
 - ▶ Neutrino Background has to be ~ 1.9K, like CMB. (We see just thermonuclear neutrinos from starcores.)

Thermal History of the Universe II.

- Primordial Nucleosynthesis: 1 MeV
 - Light particles arose
 - From calculations, 25% of the barionic matter is He. If He came into existence just in stars, 6 times lesser He would be now.
- Recombination: 3000 K, t = 380000 yrs, photons decouple from protons and electrons composing H atom. CMB.
- First light: stars begin to shine

Precision Cosmology

- Standard Model with Inflation became accepted
- ► Parameters have to be mesured precisely: Hubble constant, Ω_m , $\Omega\Lambda$
- Methods from 1990 to today:
 - Analysing the spectra of CMB fluctuation
 - Measuring distance of the la type supernovae
 - Mapping the great scale structure of the Universe

Sources

- Frei-Patkós: Inflációs kozmológia (Typotex, 2005)
- http://en.wikipedia.org/wiki/Big_bang
- http://www.kcvs.ca/martin/astro/kingsu/unit6/151/chp18_files/cosmicabund.jpg
- http://cass.ucsd.edu/public/tutorial/images/hub_1929.gif
- http://astro.uni-wuppertal.de/ kampert/Kosmologie-Bilder/Omega_L-vs-Omega_0.jpg
- http://ircamera.as.arizona.edu/astr_250/images/rad_den.gif

Thank You for your Attention!

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで