The evolution of low-metallicity massive stars

Dorottya Szécsi

Collaborators: Norbert Langer (Bonn, Germany), Carolina Kehrig (Granada, Spàin), Frank Tramper (Madrid, Spain), Takashi Moriya (Tokyo, Japan), Jonathan Mackey (Dublin, Ireland) Jíři Kubát (Ondřejov, Czech Rep.)

Grant: 13-10589S GA ČR Ondřejov, 3rd October 2016

"Z: metallicity"

"Z: metallicity"

The early Universe $(Z \approx 0)$

Credit: hubblesite.org

Compact Dwarf Galaxies

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Compact Dwarf Galaxies

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 60 million lightyears
 → local
- star formation rate: $0.1 \text{ M}_{\odot}/\text{yr}$
- ionized gas
- Iow metallicity!

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Globular Clusters

Globular Clusters

Globular Clusters

Guilera et al. 2011

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

Guilera et al. 2011

composition change due to nuclear burning ?!

$$\frac{\partial X_i}{\partial t} = \frac{A_i m_u}{\rho} \left(-\Sigma_{j,k} r_{i,j,k} + \Sigma_{k,l} r_{k,l,i} \right)$$
(13)

+ Rotation.

+ Rotation.

Massive vs. low-mass stars

Massive stars: $\gtrsim 9$ times the Sun ($\gtrsim 9 M_{\odot}$)

- nuclear reactions, final composition
- number of stars: massive stars are rare
- lifetime: massive stars have shorter lives
- final fate

Matching theory to observations

Surface properties! \rightarrow temperature (i.e. colour) X axis \rightarrow luminosity (i.e. brightness) Y axis

Matching theory to observations

Surface properties! \rightarrow temperature (i.e. colour) X axis \rightarrow luminosity (i.e. brightness) Y axis

Hertzsprung-Russell diagram (HR diagram)

Hertzsprung-Russell diagram

Groh et al. 2013
Hertzsprung-Russell diagram

Groh et al. 2013

Hertzsprung-Russell diagram

Groh et al. 2013

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)

Transparent Wind Ultraviolet INtense stars (TWUIN stars)

– in the

starburst galaxy | Zwicky 18

Back to IZw 18

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 60 million lightyears
 → local
- star formation rate: $0.1 M_{\odot}/yr$
- ionized gas
- low metallicity: $Z=1/50 Z_{\odot}$

Legrand+07, Aloisi+09, Annibali+13, Kehrig+13, Lebouteiller+13

Core Hydrogen Burning Supergiants

– in the

Early Globular Clusters

New scenario: Starforming Supergiant Shells

New scenario: Starforming Supergiant Shells

PICO shell: Mackey+2014 (Nature)

Simulating the PICO shell

Compared to observations: O – Na anticorr.

Compared to observations: O – Na anticorr.

Compared to observations: O – Na anticorr.

Compared to observations: Mg – Al anticorr.

Compared to observations: Mg – Al anticorr.

Compared to observations: Mg – Al anticorr.

Evolutionary models of low-metallicity massive stars between 9-300 $\rm M_{\odot}$

with and without rotation

Next steps...

model spectrum of TWUIN stars \rightarrow **Ondřejov**

Evolutionary models of low-metallicity massive stars between 9-300 $\rm M_{\odot}$

with and without rotation

Next steps...

model spectrum of TWUIN stars \rightarrow **Ondřejov** apply SG models as input for dinamical GC simulations \rightarrow **Spořilov**

Evolutionary models of low-metallicity massive stars between 9-300 $\rm M_{\odot}$

with and without rotation

Next steps...

model spectrum of TWUIN stars \rightarrow **Ondřejov** apply SG models as input for dinamical GC simulations \rightarrow **Spořilov**

gamma-ray bursts \leftrightarrow TWUIN stars!

the early Universe

other metal-poor environments (Green Peas galaxies, metal-poor halo stars, etc.)

binary stars... gravitational waves!

Thank you

attention!

Evolutionary models of low-metalli between 9-300 $\rm M_{\odot}$

with and without rotation

Next steps...

model spectrum of TWUIN stars $\rightarrow Ond\check{r}ejov$

- apply SG models as input for dinamical GC simulations \rightarrow Spořilov
- gamma-ray bursts ↔ TWUIN stars!
- the early Universe

other metal-poor environments (Green Peas galaxies, metal-poor halo stars, etc.)

binary stars... gravitational waves!