The theory linking gravitational waves, star-formation and the dawn of the Universe

Dr. Dorottya Szécsi

Assistant Professor / Research Adjunct Nicolaus Copernicus University, Poland

Torun, 30th November 2020

Dr. Dorottya Szécsi

Assistant Prof. / Research Adjunct

NCU, Torun, Poland

Dr. Dorottya Szécsi

Assistant Prof. / Research Adjunct

NCU, Torun, Poland

2012 Budapest

Bonn

105 ST I COMPANIES

L6 2019 Prague Birmingham Cologne

Humbold Fellow

100 II SUB LOUISI

2016

Dwarf galaxies

Gravitational waves

Gamma-ray bursts

High-redshift Univ.

Globular clusters

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Metal-poor massive stars

Gamma-ray bursts

erminnik fickelernik <u>fickel</u>'té Repérik<u>ficke</u> <u>Rebel</u>'tők (spoljaik) fickelerikék Josef

Globular clusters

hot, dense plazma

hot, dense plazma

pressure gradient

surface?

hot, dense plazma

pressure gradient

equilibrium:

surface? -> photons escape

"photosphere"

hot, dense plazma

What is inside?

equilibrium:

$\frac{\partial r}{\partial m_r} = \frac{1}{4\pi r^2 \rho}$	equation of definition of mass	(1)
$\frac{\partial P}{\partial m_r} = -\frac{Gm_r}{4\pi r^4}$	equation of hydrostatic equilibrium	(2)
$\frac{\partial L_r}{\partial m_r} \; = \; \epsilon_{\rm pl} - T \frac{\partial S}{\partial t}$	equation of energetic balance	(3)
$\frac{\partial T}{\partial m_r} = -\frac{Gm_rT}{4\pi r^4P}\nabla$	equation of energy transport, Guilera+11	(4)

composition change due to nuclear burning:

composition change due to nuclear burning:

$$\frac{\partial X_{i}}{\partial t} = \frac{A_{i}m_{u}}{\rho} \left(-\Sigma_{j,k}r_{i,j,k} + \Sigma_{k,l}r_{k,l,i}\right) \quad (5)$$

Massive vs. low-mass stars

Massive stars: \gtrsim 9 times the Sun (\gtrsim 9 M_{\odot})

Massive vs. low-mass stars

Massive stars: \geq 9 times the Sun (\geq 9 M_{\odot})

- Metallicity
- Rotation
- Binarity

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Metal-poor massive stars

Gamma-ray bursts

Globular clusters

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Metal-poor massive stars

Gamma-ray bursts

erminnik fickelernik <u>fickel</u>'té Repérik<u>ficke</u> <u>Rebel</u>'tők (spoljaik) fickelerikék Josef

Globular clusters

Binary stars...

-62 -31 0 31 62 93 124 $X [R_{\odot}]$

de Mink +09, <u>Szécsi</u> +14

Menon & Szécsi +20 (in prep.)

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Metal-poor massive stars

Gamma-ray bursts

erminnik fickelernik <u>fickel</u>'té Repérik<u>ficke</u> <u>Rebel</u>'tők (spoljaik) fickelerikék Josef

Globular clusters

Future plans

Metal-rich massive stars "assumptions" Metal-poor massive stars

Theory

Theory

Metal-rich massive stars

"assumptions″ ↓

Metal-poor massive stars

Observations

spectroscopy (good resolution, large samples)

Observations

Metal-rich massive stars

Theory

assumptions″⊈↓

Metal-poor massive stars spectroscopy (good resolution, large samples)

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Metal-poor massive stars

Gamma-ray bursts

Globular clusters

<u>Needed:</u> simulated populations of massive stars at various metallicities (single&binary)

<u>Needed:</u> simulated populations of massive stars at various metallicities (single & binary)

stellar feedback (dM/dt, ejecta composition...)

Needed: simulated populations of massive stars at various metallicities (single & binary)

Technical details...

Technical details...

Future plans...

Future plans...

Dwarf galaxies

Gravitational waves

High-redshift Univ.

Gamma-ray bursts

Globular clusters

The theory linking gravitational waves, star-formation and the dawn of the Universe

Dr. Dorottya Szécsi

Assistant Prof. / Research Adjunct NCU, Torun, Poland

Thank you for your attention!

and the second street

High-redshift Univ.

Humbold Fellow

Leading my own research group on metal-poor massive stars

FID IS SUB FOURION

3 GW progenitor theories

Dorottya Szécsi: Metal-poor massive stars – GW progenitors

Common envelope in a binary

Chemicallyhomogeneous evolution in a binary

Dynamics in dense clusters

e.g. Vigna-Gómez..<u>Szécsi</u>+18; <u>Szécsi</u>'17a,b; <u>Szécsi</u>&Wünsch'19

Direction dependent background fitting

- The new model takes into account:
 - angle between detector and burst
 - angle between Sun and detector
 - Earth uncovering
- Numerical fitting
- Lightcurve without background → further analyses

Szécsi +12a,b, Szécsi +13

A long-duration GRB progenitor model

 $(1/50 Z_{\odot})$

Szécsi'16