Massive stars from various simulations: different, but why?

Dorottya Szécsi

Assistant professor at the Nicolaus Copernicus University, Toruń
Seminar of the Institute of Astronomy
23 May 2022

It is a truth universally acknowledged, that

many people use stellar evolutionary models in their research.

It is a truth universally acknowledged, that

many people use stellar evolutionary models in their research.

- ...maybe even you?

It is a truth universally acknowledged, that

many people use stellar evolutionary models in their research.

-maybe even you?

$$
\text { massive: > } 8 \text { M }
$$

- Massive star models ("tracks"):
- libraries / grids, e.g. Geneva models, Bonn models...

It is a truth universally acknowledged, that

many people use stellar evolutionary models in their research.

- ...maybe even you?
massive: > 8 M॰
- Massive star models ("tracks"):
- libraries / grids, e.g. Geneva models, Bonn models...
- Really wide range of usage:
just
examples,
there are
more
- obstaining mass \& age of observed stars
- star-formation simulations, starcluster formation studies
- chemical evolution of the Universe
- binary population synthesis \rightarrow gravitational-wave event rates

Necessarily, the models are - most of the time used as a black box.

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM THAT TAKES DATA AND TURNS IT INTO SOMETHING. THE ISSUE IS THAT BLACK BOXES OFTEN FIND PATTERNS WITHOUT BEING ABLE TO EXPAIN THEIR METHODOLOGY.

OUTPUT

Necessarily, the models are - most of the time used as a black box.

Which is fine.

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM that takes data and turns it into SOMETHING. THE ISSUE IS THAT BLACK BOXES OFTEN FIND PATTERNS WITHOUT BEING ABLE TO EXPAIN THEIR METHODOLOGY.

Necessarily, the models are - most of the time used as a black box.

Which is fine.

However...

BLACK BOX

THE BLACK BOX IS AN ALGORITHIM that takes data and turns it into SOMETHING. THE ISSUE IS THAT BLACK BOXES OFTEN FIND PATTERNS WITHOUT BEING ABLE TO EXPAIN THEIR METHODOLOGY.

Let's peek into to box!

Let's peek into to box!

Agrawal \& Szécsi et al. (2022, MNRAS)

Agrawal \& Szécsi et al. (2022, MNRAS):
We compare 5 sets of stellar evolutionary models from 5 independent projects

- so that you don't have to ;)

Also check out: P. Agrawal (2021, PhD thesis)

We compare 5 sets of stellar evolutionary models from 5 independent projects
 - so that you don't have to ;)

- PARSEC (Padova code)
- MIST (MESA code)
- Geneva code
- BPASS
- BoOST. project (Bonn code)

Also check out: P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS):
We compare 5 sets of stellar evolutionary models from 5 independent projects

- so that you don't have to ;)
- PARSEC (Padova code)
- MIST (MESA code)
- Geneva code
- BPASS
- BoOST. project (Bonn code)

Only comparing:

 models with the same mass and composition* (single stars with no or slow rotational rate)*namely, Solar

Also check out: P. Agrawal (2021, PhD thesis)
P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)
P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)
P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

What about other predictions?

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

What about other predictions?

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

O-okay, but... why??

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

Quick and dirty answer:

we don't really understand massive star physics that well. (Yet.)

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

30 Doradus star-cluster in the Large Magellanic Cloud galaxy (VFTS survey, 2018)

Again... different, but why??

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

Again... different, but why??

Long answer...

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

When the equilibrium* is compromized:

the Eddington limit

* between gravity \& radiation pressure

Eddington limit

Credit: Stan Owocki

Other reasons for falling out of equilibrium:

- iron core
\rightarrow gravitational collapse \& SN (due to bounce-back)
- pair-instability
\rightarrow grav. collapse \& subsequent thermonuclear explosion (PISN) or pulsations (puls-PISN)
- end of a burning phase
\rightarrow restructuring, crossing the Herzsprung-gap...

Consequences for the stellar interior

- density (and pressure) inversion in the envelope
- no efficient energy transport mechanism here (weak convection)
- \rightarrow envelope "inflation"
- numerical difficulties...

CORE
ENVELOPE

How do the codes deal with that?

- several "tricks" in the literature
- various codes use various tricks \& methods
- cf. Agrawal (PhD Thesis), Agrawal \& Szécsi+22 (MNRAS)
- PARSEC ('Padova') artificially limiting the temp. gradient
- MIST (MESA) MLT++ formalism (limiting the superaaliabacitiv*) =changing how convection** is treated *difference between
**a type of internal mixing
the isothermal and
- 'Geneva' adiabatic temperature gradient
artificially enhanced mass loss at the right moment
- BPASS
inflated envelope \& post-processing with 'normal' mass loss

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

Ionizing flux...

Table 2. Time averaged ionizing photon number flux $\left[\mathrm{s}^{-1}\right]$ in the Lyman continuum emitted by the stellar models during their lives on average, cf. Section 4.2. The last column provides the amount of Lyman radiation (number of photons $\left[\mathrm{s}^{-1}\right]$) that a $10^{7} \mathrm{M}_{\odot}$ population (e.g. a starburst galaxy or a young massive cluster in the Milky Way) containing these massive stars would emit.

$\mathrm{M}_{\text {ini }}\left[\mathrm{M}_{\odot}\right]$	$24 / 25$	40	$80 / 85$	$120 / 125$	pop.
PARSEC	3.7×10^{48}	1.3×10^{49}	5.5×10^{49}	1.0×10^{50}	1.08×10^{54}
MIST	3.3×10^{48}	1.5×10^{49}	5.1×10^{49}	1.1×10^{50}	1.06×10^{54}
Geneva	3.5×10^{48}	1.2×10^{49}	5.1×10^{49}	8.5×10^{49}	9.90×10^{53}
BPASS	3.6×10^{48}	1.3×10^{49}	4.5×10^{49}	7.7×10^{49}	9.34×10^{53}
BoOST	3.7×10^{48}	1.2×10^{49}	4.2×10^{49}	6.9×10^{49}	8.89×10^{53}

up to 18\% difference!

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

Remnant mass...

Gravitational waves: compact object mergers (e.g. black holes)

Figure 2. Mass of stellar remnant as a function of the initial mass of the star (near-solar composition). Differences in the assumptions in massive star modelling can cause a variation of up to $20 \mathrm{M}_{\odot}$ in the remnant masses between simulations. Choosing to apply one of these simulations over the others in e.g. gravitational-wave event rate predictions can lead to strikingly different results.

up to $20 \mathrm{M}_{\odot}$ difference!

P. Agrawal (2021, PhD thesis)

Agrawal \& Szécsi et al. (2022, MNRAS)

What we learned today by peeking into the black box:

What we learned today
by peeking into the black box:

- Eddington limit is a thing :)

What we learned today
by peeking into the black box:

- Eddington limit is a thing :)
- stellar evolution above $40 \mathrm{M}_{\circ}$ has not reached consensus

What we learned today by peeking into the black box:

- Eddington limit is a thing :)
- stellar evolution above $40 \mathrm{M}_{\circ}$ has not reached consensus
- use stellar models with extra caution, \& be flexible for updates

What we learned today
by peeking into the black box:

- Eddington limit is a thing :)
- stellar evolution above $40 \mathrm{M}_{\circ}$ has not reached consensus
- use stellar models with extra caution, \& be flexible for updates
Thanks!

