Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

O – Na anticorrelation Globular clusters

- * second generation: polluted by hot-hydrogen burning side products ($\sim 80-100$ MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z

[O/Fe]

ve Clusters

رنـــ..., ~10⁷ M_⊙)

O – Na anticorrelation

Globular clusters

0.8

- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ①

[O/Fe]

ve Clusters

 $_{ au}$ نہ, \sim 10 $^{7}~{
m M}_{\odot})$

O – Na anticorrelation

Globular clusters

- 0.8
- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey & Langer (2018, A&A)

[O/Fe]

ve Clusters

.ند. $\sim 10^7~{
m M}_{\odot})$

O – Na anticorrelation

Globular clusters

0.8

- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey & Langer (2018, A&A)
 - cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)

[O/Fe]

ve Clusters

نــ, $\sim \! 10^7 \; \mathrm{M}_\odot$)

O – Na anticorrelation

Globular clusters

0.8

- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey & Langer (2018, A&A)
 - cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)
 - + photo-ionization confined shells (Mackey+ 2014)

[O/Fe]

ve Clusters

 $(\ldots$ نی، \sim 10 $^{7}~{
m M}_{\odot})$

O – Na anticorrelation

Globular clusters

0.8

- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey & Langer (2018, A&A)
 - cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)
 - + photo-ionization confined shells (Mackey+ 2014)
 - please check it out!

[O/Fe]

ve Clusters

 $(\ldots,\sim 10^7~{
m M}_{\odot})$ نے،

O – Na anticorrelation

Globular clusters

0.8

- second generation: polluted by hot-hydrogen burning side products (~80–100 MK)
 - i.e. CNO-cycle & Ne-Na and Mg-Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey & Langer (2018, A&A)
 - cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)
 - + photo-ionization confined shells (Mackey+2014)
 - · please check it out!
- But now...

[O/Fe]

ve Clusters

 $\sim 10^7~{
m M}_{\odot}$ رنا، رند، رند

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds → collisions → shocked wind → outflow
- thermal instability, rapid cooling if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity ⇒ clumps fall to the centre; accumulation ⇒ self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- L_{SC} , $\dot{M}_{SC} \leftarrow M_{1G}$, stellar evolution tracks
- R_{SC} + eventually radial profile (R_c, β)

I know you wonder...

- supernovae...
- pair-instability supernovae...
- remnants (GWs ©)
- cooling time...
- other elements, like Mg&Al, helium
- mass loss uncertainties, existence of low-Z supergiants
- 3D simulations
- binaries... → COMPAS binary pop.synth. group in Birmingham! ← I work here ©
- YMCs → GCs (?)
- · mass budget...

Magnesium & Aluminium

Mass budget

Correlation btw. GC mass & size of 2nd gen.

That's all, folks. Thanks.

