Role of supergiants in the

formation of globular clusters

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

University of Surrey 29th November 2018

Role of supergiants in the formation of globular clusters

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

University of Surrey 29th November 2018

Role of supergiants in the formation of globular clusters

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

University of Surrey 29th November 2018

Role of supergiants in the formation of globular clusters

Dorottya Szécsi

University of Birmingham soon: Humboldt Fellow at the University of Cologne

University of Surrey 29th November 2018

The problem with globular clusters

The problem with globular clusters

The problem with globular clusters

The problem with globular clusters

Main-sequence split

stars

The problem with globular clusters

The problem with globular clusters

The problem with globular clusters

The problem with globular clusters

O - Na anticorrelation
08

- second generation: polluted by hot-hydrogen burning side products (~80-100 MK)

The problem with globular clusters

O - Na anticorrelation
08

- second generation: polluted by hot-hydrogen burning side products (~80-100 MK)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and $\mathrm{Mg}-\mathrm{Al}$ side-chains

The problem with globular clusters

O - Na anticorrelation
08

- second generation: polluted by hot-hydrogen burning side products (~80-100 MK)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products ($\sim 80-100 \mathrm{MK}$)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products ($\sim 80-100 \mathrm{MK}$)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey \& Langer (2018, A\&A)

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products ($\sim 80-100 \mathrm{MK}$)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey \& Langer (2018, A\&A)
- cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products ($\sim 80-100 \mathrm{MK}$)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey \& Langer (2018, A\&A)
- cool supergiants (Sanyal+ 2015,2017, Szécsi+2015)
- + photo-ionization confined shells (Mackey+ 2014)

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products (~80-100 MK)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey \& Langer (2018, A\&A)
- cool supergiants (Sanyal+2015,2017, Szécsi+2015)
- + photo-ionization confined shells (Mackey+ 2014)
- please check it out!

The problem with globular clusters

O - Na anticorrelation

08

- second generation: polluted by hot-hydrogen burning side products (~80-100 MK)
- i.e. CNO-cycle \& $\mathrm{Ne}-\mathrm{Na}$ and Mg -Al side-chains
- first generation contained MASSIVE stars! at low-Z
- I happened to have a grid of low-Z massive stars... ©
- my first attempt: Szécsi, Mackey \& Langer (2018, A\&A)
- cool supergiants (Sanyal+2015,2017, Szécsi+2015)
- + photo-ionization confined shells (Mackey+ 2014)
- please check it out!
- But now...

So I went to do my 1st postdoc in Prague...

So I went to do my 1st postdoc in Prague...

So I went to do my 1st postdoc in Prague...

Rapidly cooling shocked stellar winds model

- young massive clusters have winds stellar winds \rightarrow collisions \rightarrow shocked wind \rightarrow outtlow
- thermal instability, rapid cooling if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity \Rightarrow clumps fall to the centre; accumulation \Rightarrow self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- $L_{S C}, \dot{M}_{S C} \leftarrow M_{1 G}$, stellar evolution tracks
- $R_{S C}+$ eventually radial profile $\left(R_{C}, \beta\right)$

So I went to do my 1st postdoc in Prague...
Rapidly cooling shocked stellar winds model

- supernovae...
- pair-instability supernovae...
- remnants (GWs ©)
- cooling time...
- other elements, like Mg\&Al, helium
- mass loss uncertainties, existence of low-Z supergiants
- 3D simulations
- binaries... \rightarrow COMPAS binary pop.synth. group in Birmingham! \leftarrow I work here $;$
- YMCs \rightarrow GCs (?)
- mass budget...

Magnesium \& Aluminium

Mass budget

Correlation btw. GC mass \& size of 2 nd gen.

That's all, folks. Thanks.

globular clusters + supergiants

