Stellar Evolution in I Zw 18

Dorottya Szécsi Norbert Langer Sung-Chul Yoon Debashis Sanyal Argelander-Institut für Astronomie

VFTS FLAMES Workshop 23-25 March 2015, Sheffield

Please meet I Zw 18!

Please meet | Zw 18!

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 18 Mpc \rightarrow local
- SFR: 1 M_☉/yr
- ionized gas
- low metallcity!
- unevolved gal.

Please meet | Zw 18!

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 18 Mpc \rightarrow local
- SFR: 1 M_☉/yr
- ionized gas
- low metallcity!
- unevolved gal.

$\begin{array}{c} 12 + \log({\rm O/H}) {=} 7.17 \\ \downarrow \\ Z {=} 1/50 \ Z_{\odot} \approx 0.0002 \end{array}$

Please meet I Zw 18!

I Zwicky 18

- Blue Compact Dwarf Galaxy
- 18 Mpc \rightarrow local
- SFR: 1 M_☉/yr
- ionized gas
- low metallcity!
- unevolved gal.

$\begin{array}{c} 12 + \log({\rm O/H}) = 7.17 \\ \downarrow \\ Z = 1/50 \ Z_{\odot} \approx 0.0002 \end{array}$

The grid of single stellar models with Z=0.0002

The grid of single stellar models with Z=0.0002

Szécsi et al. 2015 (submitted to A&A)

Why I Zw 18?

The grid of single stellar models with Z=0.0002

The grid of single stellar models with Z=0.0002

UV Intense Stars (UVISs)

UV Intense Stars (UVISs)

UV Intense Stars (UVISs)

UV Intense Stars (UVISs)

Comparison to the Geneva grids at low-Z

Comparison to Bonn grids $(0 < Z < Z_{\odot})$

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - Core H-burning Supergiants

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - Core H-burning Supergiants
 - UV Intense Stars (UVISs)

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - Core H-burning Supergiants
 - UV Intense Stars (UVISs)
- Szécsi et al. 2015: XXXX

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - Core H-burning Supergiants
 - UV Intense Stars (UVISs)
- Szécsi et al. 2015: XXXX
- Future observations...

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - Core H-burning Supergiants
 - UV Intense Stars (UVISs)
- Szécsi et al. 2015: XXXX
- Future observations...

Comments and questions?

- Grid of 400 stellar sequences
- Composition: $Z=0.0002 \rightarrow I Zw 18$
 - · Core H-burning Supergiants
 - UV Intense Stars (UVISs)
- Szécsi et al. 2015: XXXX
- Future observations...

Comments and questions?

Thank you for your attention!

Appendix: Surface Helium

Appendix: Surface Nitrogen

Appendix: Surface Nitrogen

Rotation

Appendix: Initial Composition

init't Of

