

How to use THESEUS' high-redshift GRB data to constrain the physics of Pop-II and Pop-III progenitors

 Dorottya Szécsi

 Dorottya Szécsi}

Humboldt Fellow

University of Cologne, Germany
Assistant professor at Nicolaus Copernicus University, Poland

THESEUS Conference 2021,
Virtual, 24th March 2021

Alexander von Humboldt
Stiftung/Foundation

Collapsar scenario

Magnetar scenario

Woosley'93, Macfadyen+99,
MacFadyen+01, Metzger+11, Rowlinson +13 , Greiner +15

Collapsar scenario

- iron core \rightarrow collapse
- supernova is weak ('failed')
i.e. compactness parameter $\boldsymbol{\xi}$ is large
- material falls in $\rightarrow \mathrm{BH}$
- fast rotation \rightarrow accretion disc \rightarrow jet \rightarrow LGRB

Woosley'93, Macfadyen+99, Yoon+05, Woosley+06

Magnetar scenario

- iron core \rightarrow collapse
- supernova is successful
i.e. compactness parameter $\boldsymbol{\xi}$ is small
- material expelled \rightarrow NS
- fast rotating, magnetized NS powers the jet \rightarrow LGRB

MacFadyen+01, Metzger+11,
Rowlinson+13, Greiner+15

Question:

What kind of star would die this way?

...task for stellar physicists!

Question:

What kind of star would die this way?

...task for stellar physicists!

- no large envelope
- jet should be able to penetrate through!
- fast rotation at the moment of collapse
- iron core... massive star

Yoon \& Langer (2005)

Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts

S.-C. Yoon ${ }^{1}$ and N. Langer ${ }^{2}$

${ }^{1}$ Astronomical Institute "Anton Pannekoek", University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands e-mail: scyoon@science.uva.nl
${ }^{2}$ Astronomical Institute, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands e-mail: n.langer@astro.uu.nl

Woosley \& Heger (2006)

THE PROGENITOR STARS OF GAMMA-RAY BURSTS

> S. E. Woosley ${ }^{1}$ AND A. HEGER ${ }^{1,2}$
> Received 2005 August 6; accepted 2005 October 3

ABSTRACT

Those massive stars that give rise to gamma-ray bursts (GRBs) during their deaths must be endowed with an unusually large amount of angular momentum in their inner regions, $1-2$ orders of magnitude greater than the ones that make common pulsars. Yet the inclusion of mass loss and angular momentum transport by magnetic torques during the precollapse evolution is known to sap the core of the necessary rotation. Here we explore the evolution of very rapidly rotating massive stars, including stripped-down helium cores that might result from mergers or mass transfer in a binary, and single stars that rotate unusually rapidly on the main sequence. For the highest possible rotation rates

Astronomy Astrophysics

Yoon \& Langer (2005)

Those massive stars that give rise to gamma-ray bursts (GRBS) during their deaths must be endowed with an unusually large amount of angular momentum in their inner regions, $1-2$ orders of magnitude greater than the ones that make common pulsars. Yet the inclusion of mass loss and angular momentum transport by magnetic torques during the precollapse evolution is known to sap the core of the necessary rotation. Here we explore the evolution of very rapidly rotating massive stars, including stripped-down helium cores that might result from mergers or mass transfer in a binary, and single stars that rotate unusually rapidly on the main sequence. For the highest possible rotation rates

Astronomy Astrophysics

Yoon \& Langer (2005) Evolut
${ }^{1}$ Astronomical I e-mail: scyoon
${ }^{2}$ Astronomical I e-mail: n. lang

The Astrophysical Jour c 2006. The American Astror

Those massive stars that give rise to gamma-ray bursts (GRBs) during their deaths must be endowed with an unusually large amount of angular momentum in their inner regions, $1-2$ orders of magnitude greater than the ones that make common pulsars. Yet the inclusion of mass loss and angular momentum transport by magnetic torques during the precollapse evolution is known to sap the core of the necessary rotation. Here we explore the evolution of very rapidly rotating massive stars, including stripped-down helium cores that might result from mergers or mass transfer in a binary, and single stars that rotate unusually rapidly on the main sequence. For the highest possible rotation rates

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

GW/SGRB progenitors: 3 theories

However...

Are they observed?
Dorottya Szécsi:
New vision for THESEUS

Are they observed?

spectroscopy
(i.e. direct evidence)

Are they observed?

spectroscopy
(i.e. direct evidence)

GRB-progenitors theories...
e.g. Castro $+14,+18$, Ramírez-Agudelo +17 , Kubátová\&Szécsi +18

The literature

Theoretical models	Indirect evidence	
Maeder'80,	Yoon+05	
Maeder+87,	Yoon+06	L-GRB
Beech+89,	Woosley +06	
Yoon+06,	Cantiello +07	
de Mink+09,	Meynet+07	L-GRB \& SN
Yoon+12,	Dessart+08	
Köhler+15,	van Marle+08	
Szécsi+15,	Eldridge 12	ionization
Marchant+16,	Stecsi+15b	
Song+16,	de Mink+16	
Marchant+17,	Mandel+16	GW
$\begin{aligned} & \text { Aguilera-Dena+18, } \\ & \text { Cui+18. } \end{aligned}$	Marchant+16	
Schootemeijer+18,	Eldridge+16	
Groh+19,	Stanway+16	
	Marchant+17	XRB
Goetberg+17,	Aguilera-Dena	
Hainich+18,	Stécsi+18	GC
Kubatova+19	Qin+19	

> Observational (direct) evidence
> Martins+13,
> Almeida+15,
> Ramachandran+19

Non-observations or non-conclusive
Vink+17,
Garcia+19

Space mission THESEUS

Shortlisted by ESA $\rightarrow 2021$

Space mission THESEUS

$$
18
$$

Space mission THESEUS

Number of events

 per redshift \#(GRB)/zSzécsi et al. 2015 (Astronomy \& Astrophysics, v.581, A15)

Challenges...

Number of events per redshift \#(GRB)/z

Get the stellar models right... Z to z
conversion...
Flexibility... MESA...
Binaries....

Challenges...

Number of events per redshift \#(GRB)/z

Get the stellar models right... Z to z conversion... Flexibility... MESA...
Binaries....

I am applying for an ERC Starting group

Gamma-Ray Bursts as Probes of Cosmic Structure

Horvath, Szécsi ... Szabó et al. (2020, MRNAS)

How to use THESEUS' high-redshift GRB data to constrain the physics of Pop-II and Pop-III progenitors

 Dorottya Szécsi

 Dorottya Szécsi}

Humboldt Fellow

University of Cologne, Germany
Assistant professor at Nicolaus Copernicus University, Poland

THESEUS Conference 2021,
Virtual, 24th March 2021

Alexander von Humboldt
Stiftung/Foundation

