An introduction to the mathematics of gravitational waves

Áron Szabó

Nicolaus Copernicus University in Toruń

5th May 2022

The slogan of general relativity

Matter tells spacetime how to curve; spacetime tells matter how to move.

Image adapted from Wikipedia user Mysid

Principles of general relativity

Principle of local equivalence

In small, special relativity is a good approximation.

Principle of general covariance

The equations should transform covariantly under general transformations.

Units of measurement

We will work mostly in **geometrized units** where c = 1 and G = 1 (gravitational constant). This means we measure time, length and mass in the same units, say, seconds. If [x] denotes the numerical value of a physical quantity in SI then in the geometrized system

$$1 \text{ m} = \frac{1}{[c]} \text{ s} = \frac{1}{299792458} \text{ s}$$
$$1 \text{ kg} = \frac{[G]}{[c^3]} \text{ s} = 2.477 \cdot 10^{-36} \text{ s}$$

Incidentally, modern SI (since 2019) is also based on the idea of fixing units of measurements via universal constants but there the natural constants have more complicated values for historical reasons.

The metric

- $\vec{\nabla}_{1}\vec{W} = (v^{1}v^{2}) \begin{pmatrix} w^{1} \\ w^{2} \end{pmatrix} = (v^{1}v^{2}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} w \\ 0 \end{pmatrix} \end{pmatrix}$
- Recall that everything about Euclidean geometry is encoded in the scalar product. ۲
- The central object of general relativity is the spacetime metric $ds^2(x) = \sum_{i,j=1}^4 g_{ij}(x) dx^i dx^j$
 - nondegenerate symmetric, bilinear form on tangent vectors

► at each spacetime point, it can be written in some coordinates as $\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{1} & 0 & \mathbf{0} \\ 0 & 0 & \mathbf{1} & 0 \end{pmatrix}$ (however,

generically this holds only at the given point, see later)

- note that the metric is not positive definite \rightarrow causal structure
- one can measure **time intervals** along timelike vectors, **lengths** of spacelike vectors and ۲ **angles** between two spacelike vectors

Example: special relativity

The spacetime of special relativity is the affine space \mathbb{R}^4 endowed with the metric given by the **constant** matrix

$$\eta_{mn}(x) \equiv \begin{pmatrix} -\mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

in standard coordinates. We will see later that this spacetime is empty.

The kinematics of curves

Given a (parametrized) curve $x^{l}(s)$ in M, we call the quantities

$$v^{l}(s) := \dot{x}^{l}(s)$$
 the velocity of the curve, and $v := a^{l}(s) := \ddot{x}^{l}(s) + \sum_{j,k=1}^{4} \Gamma^{l}_{jk}(x(s)) \cdot v^{\overline{j}}(s) \cdot v^{\overline{k}}(s)$ the acceleration of the curve $a_{\gamma} := \nabla A$

The coefficient functions are called the $\mathbf{Christoffel\ symbols}$ and they can be calculated as

$$\Gamma^l_{\ jk}(x) = \sum_{r=1}^{+} rac{1}{2} g^{lr}(x) \cdot (\partial_k g_{rj}(x) + \partial_j g_{rk}(x) - \partial_r g_{jk}(x)) \qquad
abla_{\partial_j} \partial_k = \Gamma^l_{\ jk} \partial_l$$

where g^{lr} is the inverse matrix of g_{ij} .

As straight as it gets – geodesics

We say a curve is a **geodesic** if its acceleration is always zero.

$$\ddot{x}^{l}(s) + \Gamma^{l}_{jk}(x(s)) \cdot \dot{x}^{j}(s) \cdot \dot{x}^{k}(s) = 0$$

This equation has a solution for a short while for any initial conditions.

Moreover, on a small enough scale there is a single geodesic between two points.

Spacetime tells matter how to move

Timelike geodesics describe **freely falling particles** (under the influence of gravitation only).

Image credit Google Maps and Openstreetmap

Intermezzo – Santa Claus and the normal coordinates

- Santa Claus invests in cheap drones
- they travel with constant velocity for 12 hours
- they need to be started together

Image adapted from Wikipedia

Intermezzo – Santa Claus and the normal coordinates

- Santa Claus invests in cheap drones
- they travel with constant velocity for 12 hours
- they need to be started together
- their initial velocity determines where they end up

Image adapted from Wikipedia

Intermezzo – Santa Claus and the normal coordinates

- Santa Claus invests in cheap drones
- they travel with constant velocity for 12 hours
- they need to be started together
- their initial velocity determines where they end up
- Santa may choose two orthogonal unit vectors to construct a coordinate system
- normal coordinates around the north pole

Image adapted from Wikipedia

The curvature tensor $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$

- Normal coordinates in general with the same procedure
- Taylor expansion of the metric in these coordinates: •

$$g_{ij}(x) = \eta_{ij} + 0 + \underbrace{R_{ij\underline{k}l}x^{\underline{k}}x^{\underline{l}}}_{\mathcal{O}} + \mathcal{O}(|x|^3)$$

We call R_{ijkl} the **Riemann curvature tensor**.

- local equivalence principle.
- The curvature tensor can be expressed in terms of the Christoffel symbols

$$R^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}{}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}{}_{\mu\sigma} + \Gamma^{\rho}{}_{\mu\lambda}\Gamma^{\lambda}{}_{\nu\sigma} - \Gamma^{\rho}{}_{\nu\lambda}\Gamma^{\lambda}{}_{\mu\sigma}$$
= R(gm, dpgm, dpgm)

The Riemann curvature tensor governs how nearby geodesics speed out via this differential equation

$$\frac{\nabla \mathbf{n}^{a}(s)}{ds^{2}} = \mathbf{R}^{a}_{bcd}(u(s)) \cdot \mathbf{u}^{b}(s) \cdot \mathbf{u}^{d}(s) \cdot \mathbf{n}^{c}(s)$$

where $u^{a}(s)$ is the geodesic around which we do our investigation.

Volumes and the Ricci curvature Recall the formula for integration in polar coordinates:

• On a spacetime, this generalizes to $\int_A f(x) \sqrt{|\det g_{ij}|} d^4x$, and $\operatorname{Vol}(A) = \int_A \sqrt{|\det g_{ij}|} d^4x.$

• In normal coordinates we have the expansion

$$\sqrt{|\det g_{ij}|} = 1 + 0 - \frac{1}{6} R^k_{\ ikj} x^i x^j + \mathcal{O}(|x|^3)$$

- We call $R_{ij} := R^k{}_{ikj}$ the **Ricci tensor** of the metric
- Moreover, its trace $S := R_i^i$ is called the scalar curvature of the metric.

g. Mini-lessbarto

Einstein's equations

Desiderata

Motivation: physics is full of **second-order differential equations**:

$$m\ddot{r} = \mathbf{F}(\dot{r}, r, t)$$
(Newton)
$$\begin{cases}
\Delta \varphi + \frac{\partial}{\partial t} \operatorname{div} \mathbf{A} &= -\frac{\rho}{\varepsilon_0} \\
\Delta \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \operatorname{grad} \left(\operatorname{div} \mathbf{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} \right) &= -\mu_0 \mathbf{J}
\end{cases}$$
(Maxwell)

Goal:

some second-order expression in g = matter content of the universe $\Theta_{ab}(g_{mn}, \partial_p g_{mn}, \partial_p \partial_q g_{mn}) = \text{const} \cdot T_{ab}$

Ideally, the left-hand side should be divergence free and quasilinear.

Moreover, by the principle of covariance, we require that the equation be generally covariant¹.

Áron Szabó

¹That is, it should be covariant under all diffeomorphisms.

Theorem 1 (Lovelock, 1971)

In four dimensions, the only such Θ_{ab} are of the form

$$\Theta = \alpha \cdot G_{ab} + \Lambda \cdot g_{ab},$$

where $\alpha, \Lambda \in \mathbb{R}$ are constants and

$$G(g)_{ab} := R(g)_{ab} - \frac{1}{2}S(g) \cdot g_{ab}$$

is the so-called **Einstein tensor**.

Einstein equation!

$$\alpha(R_{ab} - \frac{1}{2}S \cdot g_{ab}) + \Lambda \cdot g_{ab} = \text{const} \cdot T_{ab}$$

• Based on experience in physics, we want to have a differential equation, thus $\alpha \neq 0$ and we can assume $\alpha = 1$ by rescaling.

Einstein equation!

$$R_{ab} - \frac{1}{2}S \cdot g_{ab} + \Lambda \cdot g_{ab} = \text{const} \cdot T_{ab}$$

- Based on experience in physics, we want to have a differential equation, thus $\alpha \neq 0$ and we can assume $\alpha = 1$ by rescaling.
- The constant turns out to be 8π in our system of units.

Einstein equation!

$$R_{ab} - \frac{1}{2}S \cdot g_{ab} + \Lambda \cdot g_{ab} = 8\pi T_{ab}.$$

- Based on experience in physics, we want to have a differential equation, thus $\alpha \neq 0$ and we can assume $\alpha = 1$ by rescaling.
- The constant turns out to be 8π in our system of units.
- For the sake of simplicity, we will take $\Lambda = 0$ in this lecture.

- Based on experience in physics, we want to have a differential equation, thus $\alpha \neq 0$ and we can assume $\alpha = 1$ by rescaling.
- The constant turns out to be 8π in our system of units.
- For the sake of simplicity, we will take $\Lambda = 0$ in this lecture.
- We have seen that the Ricci tensor tells us how the volumes change, which plays nicely with the interpretation of curvature as gravity.

 $\frac{1}{2}g^{ab}\underline{\partial_a\partial_mg_{bn}} + \frac{1}{2}g^{ab}\underline{\partial_a\partial_ng_{mb}} - \frac{1}{2}g^{ab}\underline{\partial_a\partial_bg_{mn}} - \frac{3}{2}g^{ab}\underline{\partial_m\partial_ng_{ab}}$ $-\frac{1}{2}g^{bl}g^{ar}\partial_a g_{rl}\underline{\partial_m g_{bn}} - \frac{1}{2}g^{bl}g^{ar}\partial_a g_{rl}\underline{\partial_n g_{mb}} + \frac{1}{4}g^{bl}g^{ar}\partial_n g_{al}\underline{\partial_m g_{rb}}$

In terms of the metric, the Einstein equation looks like this:²

The Einstein equations are hard so solve

Finding solutions is hopeless except for **highly symmetric** situations (Minkowski, Schwarzschild, Robertson–Walker etc.) or

with extra conditions (global hyperbolicity, Choquet-Bruhat etc.).

 $+\frac{1}{4|a|}g^{ab}\partial_b|g|\partial_n g_{ma}-\frac{1}{4|a|}g^{ab}\partial_b|g|\partial_a g_{mn}-\frac{1}{4|g|}g^{ab}\partial_b|g|\partial_m g_{an}$

 $=8\pi T_{mn}$

 $J_{ab}(x) \equiv \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$

Linearization

This is where the linearized theory comes into play: suppose we have a "background" solution g_{ab} of the full Einstein equation

$$G(g) = 8\pi T(g)$$

and look for solutions of the form

$$g_{ab} + \epsilon h_{ab}$$

where h_{ab} is a symmetric tensor.

 $G(g + \epsilon h) = 8\pi T(g + \epsilon h)$

Linearization

This is where the linearized theory comes into play: suppose we have a "background" solution g_{ab} of the full Einstein equation

$$G(g) = 8\pi T(g)$$

and look for solutions of the form

$$g_{ab} + \epsilon h_{ab}$$

where h_{ab} is a symmetric tensor.

$$G(g + \epsilon h) = 8\pi T(g + \epsilon h)$$

$$G(g) + \epsilon \cdot \left[\frac{d}{d\epsilon} \right]_{\epsilon=0} G(g + \epsilon h) + O(\epsilon^2) = 8\pi T(g) + \epsilon \cdot \left[8\pi \cdot \frac{d}{d\epsilon} \right]_{\epsilon=0} T(g + \epsilon h) + O(\epsilon^2)$$

Linearization

This is where the linearized theory comes into play: suppose we have a "background" solution g_{ab} of the full Einstein equation

$$G(g) = 8\pi T(g)$$

and look for solutions of the form

$$g_{ab} + \epsilon h_{ab}$$

where h_{ab} is a symmetric tensor.

$$G(g + \epsilon h) = 8\pi T(g + \epsilon h)$$

$$G(g) + \epsilon \cdot \left. \frac{d}{d\epsilon} \right|_{\epsilon=0} G(g + \epsilon h) + O\left(\epsilon^2\right) = 8\pi T(g) + \epsilon \cdot 8\pi \cdot \left. \frac{d}{d\epsilon} \right|_{\epsilon=0} T(g + \epsilon h) + O\left(\epsilon^2\right)$$

$$\left. \frac{d}{d\epsilon} \right|_{\epsilon=0} G(g + \epsilon h) = 8\pi \left. \frac{d}{d\epsilon} \right|_{\epsilon=0} T(g + \epsilon h)$$

This is almost a wave equation for h_{ab} ! But there are a few annoying terms.

Intermezzo – gauge freedom

In many physical theories there are extra degrees of freedom.

$$\begin{split} m\ddot{r} &= \mathbf{F}(\dot{r}, r, t) = -\operatorname{grad} V(r) & V \leftrightarrow V \underbrace{+c}_{\varepsilon_0} & \underbrace{A} & \underbrace{A}$$

Using this freedom, we may be able to **impose conditions** that make calculations easier, e.g.

- that the mechanical potential is zero at a given point
- that the 4-divergence of the potential is zero div $\mathbf{A} + \mu_0 \varepsilon_0 \frac{\partial \varphi}{\partial t} = 0$ (Lorenz gauge)

In general, if we want to achieve a certain condition, we need to solve a partial differential equation for the gauging terms, or at least argue why there is a solution.

.

Gauge fixing

The Einstein equation is generally covariant, therefore there is a huge amount of gauge freedom. On a linear level, this manifests itself like this:

Fact: vacuum gauge freedom around the Minkowski metric If h_{ab} solves the linear vacuum Einstein equations around η , then so does $h_{ab} + \partial_b X_a + \partial_a X_b$ for any vector field X^a .

Such a change can be described as letting the metric flow under the vector field³ $X^i \partial_i$, and it does not change the underlying physics due to general covariance. However, the calculations are greatly simplified with this extra term.

Fact (partial gauge fixing by Lorenz gauge) By choosing the vector field appropriately, we can achieve that the 4-divergence of $h_{ab}^{\text{Lor}} := h_{ab} + X_{a,b} + X_{b,a}$ is zero.

³More precisely, the extra term is the coordinate expression of the Lie derivative $\mathcal{L}_X g$.

Vacuum and the wave equation

After some calculations one arrives at the following equation (here \bar{h}_{ab} is the trace-reversed version of h_{ab}).

The linearized vacuum Einstein equations in Lorenz gauge

$$0 = \bar{h}^{,a}_{mn,a} = \eta^{ab} \bar{h}_{mn,ab} = \left(-\frac{\partial^2}{\partial t^2} + \Delta\right) \bar{h}_{ab}$$

Key result

Linear perturbations solve a wave equation and thus propagate with the speed of light in vacuum.

- This is a single Fourier mode
- Divergence-freeness implies $k^a A_{ab} = 0.$

Image credit Wikipedia user Constant314

Finishing fixing the gauge

The Lorentz gauge is only a partial gauge, we may impose further conditions.

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^{t} = \omega, \quad k^{x} = k^{y} = 0, \quad k^{z} = \omega$$

$$k_{t} = -\omega, \quad k_{x} = k_{y} = 0, \quad k_{z} = \omega$$

and

$$\bar{h}_{mn} = \begin{pmatrix} A_{tt} & A_{tx} & A_{ty} & A_{tz} \\ A_{xt} & A_{xx} & A_{xy} & A_{xz} \\ A_{yt} & A_{yx} & A_{yy} & A_{yz} \\ A_{zt} & A_{zx} & A_{zy} & A_{zz} \end{pmatrix} \cos(\omega(t-z))$$

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^t = \omega, \quad k^x = k^y = 0, \quad k^z = \omega$$

and

$$k_t = -\omega, \quad k_x = k_y = 0, \quad k_z = \omega$$

$$\bar{h}_{mn} = \begin{pmatrix} A_{tt} & A_{tx} & A_{ty} & A_{tz} \\ A_{tx} & A_{xx} & A_{xy} & A_{xz} \\ A_{ty} & A_{xy} & A_{yy} & A_{yz} \\ A_{tz} & A_{xz} & A_{yz} & A_{zz} \end{pmatrix} \cos(\omega(t-z))$$

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^t = \omega, \quad k^x = k^y = 0, \quad k^z = \omega$$

and

$$k_t = -\omega, \quad k_x = k_y = 0, \quad k_z = \omega$$

$$\bar{h}_{mn} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & A_{xz} \\ 0 & A_{xy} & A_{yy} & A_{yz} \\ 0 & A_{xz} & A_{yz} & A_{zz} \end{pmatrix} \cos(\omega(t-z))$$

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^t = \omega, \quad k^x = k^y = 0, \quad k^z = \omega$$

and

$$k_t = -\omega, \quad k_x = k_y = 0, \quad k_z = \omega$$

$$\bar{h}_{mn} = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & A_{xx} & A_{xy} & 0\\ 0 & A_{xy} & A_{yy} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \cos(\omega(t-z))$$

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^t = \omega, \quad k^x = k^y = 0, \quad k^z = \omega$$

and

$$k_t = -\omega, \quad k_x = k_y = 0, \quad k_z = \omega$$

$$\bar{h}_{mn} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -A_{xx} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cos(\omega(t-z))$$

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive z-direction, i.e.

$$k^t = \omega, \quad k^x = k^y = 0, \quad k^z = \omega$$

and

$$k_t = -\omega, \quad k_x = k_y = 0, \quad k_z = \omega$$

$$\bar{h}_{mn} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -A_{xx} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cos(\omega(t-z))$$

Effects of free particles: a ring of test particles

Consider a particle at rest at the origin with respect to a Lorentz frame and another particle which is initially $(x, y, z) = (\epsilon \cos \theta, \epsilon \sin \theta, 0)$ (i.e. on a circle perpendicular to the wave propagation direction).

Then one can show that the test particle stays at the origin, and for the deviation vector between the two particles ξ^a satisfies the equations

$$\begin{cases} \frac{\partial^2}{\partial t^2} \xi^x &= \frac{1}{2} \epsilon \cos \theta \frac{\partial^2}{\partial t^2} h_{xx} + \frac{1}{2} \epsilon \sin \theta \frac{\partial^2}{\partial t^2} h_{xy} \\ \frac{\partial^2}{\partial t^2} \xi^y &= \frac{1}{2} \epsilon \cos \theta \frac{\partial^2}{\partial t^2} h_{xy} - \frac{1}{2} \epsilon \sin \theta \frac{\partial^2}{\partial t^2} h_{xx}, \end{cases}$$

which has solution

$$\xi^{x} = \epsilon \cos \theta + \frac{1}{2} \epsilon \cos \theta A_{xx} \cos(\omega t) + \frac{1}{2} \epsilon \sin \theta A_{xy} \cos(\omega t)$$
$$\xi^{y} = \epsilon \sin \theta + \frac{1}{2} \epsilon \cos \theta A_{xy} \cos(\omega t) - \frac{1}{2} \epsilon \sin \theta A_{xx} \cos(\omega t)$$

Polarisation states

How to detect gravitational waves?

We cannot measure the deviations with sticks since they are also subject to the same effect. However, a Michelson–Morley interferometer can measure the round-time in both directions.

Image adapted from Wikipedia user Cmglee.

Summary

- We have seen how the Einstein equations follow from first principles.
- Since it is nonlinear, we linearized it.
- In an appropriately chosen gauge, the linearization is a wave equation.
- We solved this equation with a plane wave ansatz.
- These gravitational waves cause a wobble that propagate with the speed of light.
- This can be measured with interferometers.

But wait... there is more!

- What happens if we choose a different background solution?
- Do gravitational waves carry energy?
- What is the meaning of gravitational waves in the full theory?
- How do gravitational waves form?
- $\bullet~{\rm etc.}$

