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The slogan of general relativity
Matter tells spacetime how to curve; spacetime tells matter how to move.

Image adapted from Wikipedia user Mysid
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Principles of general relativity

Principle of local equivalence
In small, special relativity is a good approximation.

Principle of general covariance
The equations should transform covariantly
under general transformations.
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Units of measurement

We will work mostly in geometrized units where c = 1 and G = 1 (gravitational constant). This
means we measure time, length and mass in the same units, say, seconds. If [x] denotes the
numerical value of a physical quantity in SI then in the geometrized system

1 m = 1
[c] s = 1

299792458 s

1 kg = [G]
[c3] s = 2.477 · 10−36 s

Incidentally, modern SI (since 2019) is also based on the idea of fixing units of measurements via
universal constants but there the natural constants have more complicated values for historical
reasons.
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A quick and dirty crash course in
differential geometry
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The metric

Recall that everything about Euclidean geometry is encoded in the scalar product.
The central object of general relativity is the spacetime metric ds2(x) =

�4
i,j=1gij(x)dxidxj

� nondegenerate symmetric, bilinear form on tangent vectors

� at each spacetime point, it can be written in some coordinates as




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (however,

generically this holds only at the given point, see later)
note that the metric is not positive definite � causal structure
one can measure time intervals along timelike vectors, lengths of spacelike vectors and
angles between two spacelike vectors
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Example: special relativity

The spacetime of special relativity is the affine space R4

endowed with the metric given by the constant matrix

ηmn(x) ≡




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




in standard coordinates. We will see later that this
spacetime is empty.
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The kinematics of curves
Given a (parametrized) curve xl(s) in M , we call the quantities

vl(s) := ẋl(s) the velocity of the curve, and v := γ̇

al(s) := ẍl(s) +
4�

j,k=1
Γl

jk(x(s)) · vj(s) · vk(s) the acceleration of the curve aγ := ∇γ̇ γ̇

The coefficient functions are called the Christoffel symbols and they can be
calculated as

Γl
jk(x) =

4�

r=1

1
2 glr(x) · (∂kgrj(x) + ∂jgrk(x) − ∂rgjk(x)) ∇∂j ∂k = Γl

jk∂l

where glr is the inverse matrix of gij .
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As straight as it gets – geodesics
We say a curve is a geodesic if its acceleration is always
zero.

ẍl(s) + Γl
jk(x(s)) · ẋj(s) · ẋk(s) = 0

This equation has a solution for a short while for any initial
conditions.
Moreover, on a small enough scale there is a single geodesic
between two points.

Spacetime tells matter how to move
Timelike geodesics describe freely falling particles (under the influence of gravitation only).

Image credit Google Maps and Openstreetmap
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Intermezzo – Santa Claus and the normal coordinates

Image adapted from Wikipedia

Santa Claus invests in cheap drones
they travel with constant velocity for 12 hours
they need to be started together
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Intermezzo – Santa Claus and the normal coordinates

Image adapted from Wikipedia

Santa Claus invests in cheap drones
they travel with constant velocity for 12 hours
they need to be started together
their initial velocity determines where they end
up
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Intermezzo – Santa Claus and the normal coordinates

Image adapted from Wikipedia

Santa Claus invests in cheap drones
they travel with constant velocity for 12 hours
they need to be started together
their initial velocity determines where they end
up
Santa may choose two orthogonal unit vectors
to construct a coordinate system
normal coordinates around the north pole
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The curvature tensor

Normal coordinates in general with the same procedure
Taylor expansion of the metric in these coordinates:

gij(x) = ηij + 0 + Rijklx
kxl + O(|x|3)

We call Rijkl the Riemann curvature tensor.
local equivalence principle.
The curvature tensor can be expressed in terms of the
Christoffel symbols

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ
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Geodesic deviation

The Riemann curvature tensor governs how nearby geodesics spread
out via this differential equation

∇2na(s)
ds2 = Ra

bcd(u(s)) · ub(s) · ud(s) · nc(s),

where ua(s) is the geodesic around which we do our investigation.
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Volumes and the Ricci curvature
Recall the formula for integration in polar coordinates:

��
f(x, y)dxdy =

��
f(r, φ)rdrdφ.

On a spacetime, this generalizes to
�

A
f(x)

�
| det gij |d4x, and

Vol(A) =
�

A

�
| det gij |d4x.

In normal coordinates we have the expansion
�

| det gij | = 1 + 0 − 1
6Rk

ikjxixj + O(|x|3)

We call Rij := Rk
ikj the Ricci tensor of the metric

Moreover, its trace S := Ri
i is called the scalar curvature of the metric.
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Desiderata

Motivation: physics is full of second-order differential equations:

mr̈ = F(ṙ, r, t) (Newton)
�

Δϕ + ∂
∂t div A = − ρ

ε0

ΔA − 1
c2

∂2A
∂t2 − grad

�
div A + 1

c2
∂ϕ
∂t

�
= −µ0J

(Maxwell)

Goal:
some second-order expression in g = matter content of the universe

Θab(gmn, ∂pgmn, ∂p∂qgmn) = const · Tab

Ideally, the left-hand side should be divergence free and quasilinear.
Moreover, by the principle of covariance, we require that the equation be generally covariant1.

1That is, it should be covariant under all diffeomorphisms.
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The Einstein equations are canonical 1

Theorem 1 (Lovelock, 1971)
In four dimensions, the only such Θab are of the form

Θ = α · Gab + Λ · gab,

where α, Λ ∈ R are constants and

G(g)ab := R(g)ab − 1
2S(g) · gab

is the so-called Einstein tensor.
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The Einstein equations are canonical 2

Einstein equation!

α(Rab − 1
2S · gab) + Λ · gab = const · Tab

Based on experience in physics, we want to have a differential equation, thus α �= 0 and we can
assume α = 1 by rescaling.

Áron Szabó Mathematics of gravitational waves page 17



The Einstein equations are canonical 2

Einstein equation!

Rab − 1
2S · gab + Λ · gab = const · Tab

Based on experience in physics, we want to have a differential equation, thus α �= 0 and we can
assume α = 1 by rescaling.
The constant turns out to be 8π in our system of units.
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The Einstein equations are canonical 2

Einstein equation!

Rab − 1
2S · gab + Λ · gab = 8πTab.

Based on experience in physics, we want to have a differential equation, thus α �= 0 and we can
assume α = 1 by rescaling.
The constant turns out to be 8π in our system of units.
For the sake of simplicity, we will take Λ = 0 in this lecture.
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The Einstein equations are canonical 2

Einstein equation!

Rab − 1
2S · gab+Λ · gab = 8πTab.

Based on experience in physics, we want to have a differential equation, thus α �= 0 and we can
assume α = 1 by rescaling.
The constant turns out to be 8π in our system of units.
For the sake of simplicity, we will take Λ = 0 in this lecture.
We have seen that the Ricci tensor tells us how the volumes change, which plays nicely with
the interpretation of curvature as gravity.
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The Einstein equations are hard so solve
In terms of the metric, the Einstein equation looks like this:2

1
2gab∂a∂mgbn + 1

2gab∂a∂ngmb − 1
2gab∂a∂bgmn − 3

2gab∂m∂ngab

−1
2gblgar∂agrl∂mgbn − 1

2gblgar∂agrl∂ngmb + 1
4gblgar∂ngal∂mgrb

+ 1
4|g|g

ab∂b|g|∂ngma − 1
4|g|g

ab∂b|g|∂agmn − 1
4|g|g

ab∂b|g|∂mgan

+Λgmn = 8πTmn.

Finding solutions is hopeless except for highly symmetric
situations (Minkowski, Schwarzschild, Robertson–Walker etc.) or
with extra conditions (global hyperbolicity, Choquet-Bruhat etc.).

2The credit for the explicit formula goes to Ville Hirvonen from Profound Physics.
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Linearization
This is where the linearized theory comes into play: suppose we have a “background” solution gab

of the full Einstein equation
G(g) = 8πT (g)

and look for solutions of the form
gab + �hab

where hab is a symmetric tensor.

G(g + �h) = 8πT (g + �h)
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Linearization
This is where the linearized theory comes into play: suppose we have a “background” solution gab

of the full Einstein equation
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and look for solutions of the form
gab + �hab

where hab is a symmetric tensor.
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Linearization
This is where the linearized theory comes into play: suppose we have a “background” solution gab

of the full Einstein equation
G(g) = 8πT (g)

and look for solutions of the form
gab + �hab

where hab is a symmetric tensor.

G(g + �h) = 8πT (g + �h)

G(g) + � · d

d�

����
�=0

G(g + �h) + O
�
�2�

= 8πT (g) + � · 8π · d

d�

����
�=0

T (g + �h) + O
�
�2�

d

d�

����
�=0

G(g + �h) = 8π
d

d�

����
�=0

T (g + �h)
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d

d�

����
�=0

G(g + �h) = 8π
d

d�

����
�=0

T (g + �h)

Simplifying assumptions:
the right-hand side is zero (that is, the perturbation may contribute only from the second
order term).
We linearize around the Minkowski metric, that is gmn = ηmn and T (g) = 0.

d

d�

����
�=0

G(η + �h) = 0

After some tedious calculations, one arrives at

�h = 2 div(∇h) − Hess(tr h)

This is almost a wave equation for hab! But there are a few annoying terms.
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Intermezzo – gauge freedom

In many physical theories there are extra degrees of freedom.

mr̈ = F(ṙ, r, t) = − grad V (r) V � V + c
�

Δϕ + ∂
∂t div A = − ρ

ε0

ΔA − 1
c2

∂2A
∂t2 − grad

�
div A + 1

c2
∂ϕ
∂t

�
= −µ0J

�
ϕ � ϕ − ∂λ

∂t

A � A + grad λ

Using this freedom, we may be able to impose conditions that make calculations easier, e.g.
that the mechanical potential is zero at a given point
that the 4-divergence of the potential is zero div A + µ0ε0

∂ϕ
∂t = 0 (Lorenz gauge)

In general, if we want to achieve a certain condition, we need to solve a partial differential equation
for the gauging terms, or at least argue why there is a solution.
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Gauge fixing
The Einstein equation is generally covariant, therefore there is a huge amount of gauge freedom.
On a linear level, this manifests itself like this:

Fact: vacuum gauge freedom around the Minkowski metric
If hab solves the linear vacuum Einstein equations around η, then so does hab + ∂bXa + ∂aXb for
any vector field Xa.

Such a change can be described as letting the metric flow under the vector field3 Xi∂i, and it does
not change the underlying physics due to general covariance. However, the calculations are greatly
simplified with this extra term.

Fact (partial gauge fixing by Lorenz gauge)
By choosing the vector field appropriately, we can achieve that the 4-divergence of
hLor

ab := hab + Xa,b + Xb,a is zero.

3More precisely, the extra term is the coordinate expression of the Lie derivative LXg.
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Vacuum and the wave equation

After some calculations one arrives at the following equation (here h̄ab is the trace-reversed version
of hab).

The linearized vacuum Einstein equations in Lorenz gauge

0 = h̄,a
mn,a = ηabh̄mn,ab =

�
− ∂2

∂t2 + Δ
�

h̄ab

Key result
Linear perturbations solve a wave equation and thus propagate with the speed of light in vacuum.
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Plane waves

Plane wave ansatz:

h̄ab = Aab cos(kmxm)

This is a single Fourier mode
Divergence-freeness implies
kaAab = 0.

Image credit Wikipedia user Constant314
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Finishing fixing the gauge

The Lorentz gauge is only a partial gauge, we may impose further conditions.

Further gauge fixing
By adding a further gauging term, we may further achieve that

the trace is zero
A0b = 0
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Our plane wave has only two degrees of freedom

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive
z-direction, i.e.

kt = ω, kx = ky = 0, kz = ω

and
kt = −ω, kx = ky = 0, kz = ω

Then Aaz = 0 for all a.
All in all, we obtain

h̄mn =




Att Atx Aty Atz

Axt Axx Axy Axz

Ayt Ayx Ayy Ayz

Azt Azx Azy Azz


 cos(ω(t − z))
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Our plane wave has only two degrees of freedom

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive
z-direction, i.e.

kt = ω, kx = ky = 0, kz = ω

and
kt = −ω, kx = ky = 0, kz = ω

Then Aaz = 0 for all a.
All in all, we obtain

h̄mn =




Att Atx Aty Atz

Atx Axx Axy Axz

Aty Axy Ayy Ayz

Atz Axz Ayz Azz


 cos(ω(t − z))
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Our plane wave has only two degrees of freedom

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive
z-direction, i.e.

kt = ω, kx = ky = 0, kz = ω

and
kt = −ω, kx = ky = 0, kz = ω

Then Aaz = 0 for all a.
All in all, we obtain

h̄mn =




0 0 0 0
0 Axx Axy Axz

0 Axy Ayy Ayz

0 Axz Ayz Azz


 cos(ω(t − z))
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Our plane wave has only two degrees of freedom

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive
z-direction, i.e.

kt = ω, kx = ky = 0, kz = ω

and
kt = −ω, kx = ky = 0, kz = ω

Then Aaz = 0 for all a.
All in all, we obtain

h̄mn =




0 0 0 0
0 Axx Axy 0
0 Axy Ayy 0
0 0 0 0


 cos(ω(t − z))
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Our plane wave has only two degrees of freedom

Next suppose we orient our spatial coordinate axes so that the wave is travelling in the positive
z-direction, i.e.

kt = ω, kx = ky = 0, kz = ω

and
kt = −ω, kx = ky = 0, kz = ω

Then Aaz = 0 for all a.
All in all, we obtain

h̄mn =




0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


 cos(ω(t − z))
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Effects of free particles: a ring of test particles
Consider a particle at rest at the origin with respect to a Lorentz frame and another particle which
is initially (x, y, z) = (� cos θ, � sin θ, 0) (i.e. on a circle perpendicular to the wave propagation
direction).
Then one can show that the test particle stays at the origin, and for the deviation vector between
the two particles ξa satisfies the equations

�
∂2

∂t2 ξx = 1
2 � cos θ ∂2

∂t2 hxx + 1
2 � sin θ ∂2

∂t2 hxy

∂2

∂t2 ξy = 1
2 � cos θ ∂2

∂t2 hxy − 1
2 � sin θ ∂2

∂t2 hxx,

which has solution

ξx = � cos θ + 1
2� cos θAxx cos(ωt) + 1

2� sin θAxy cos(ωt)

ξy = � sin θ + 1
2� cos θAxy cos(ωt) − 1

2� sin θAxx cos(ωt)
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Polarisation states
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How to detect gravitational waves?
We cannot measure the deviations with sticks since they are also subject to the same effect.
However, a Michelson–Morley interferometer can measure the round-time in both directions.

Image adapted from Wikipedia user Cmglee.
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Summary

We have seen how the Einstein equations follow from first principles.
Since it is nonlinear, we linearized it.
In an appropriately chosen gauge, the linearization is a wave equation.
We solved this equation with a plane wave ansatz.
These gravitational waves cause a wobble that propagate with the speed of light.
This can be measured with interferometers.
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But wait. . . there is more!

What happens if we choose a different background solution?
Do gravitational waves carry energy?
What is the meaning of gravitational waves in the full theory?
How do gravitational waves form?
etc.
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Suggested reading

Chapter 20 in R. D’Inverno, Introducing Einstein’s relativity, Clarendon Press, 1998
B. F. Schutz’s lecture notes about Gravitational Waves at the 2011 Azores School on
Observational Cosmology (online)
T. Matolcsi, Spacetime without reference frames, Minkowski Press, 2020 (online)
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