Cluster winds and how they depend on the stellar population parameters

Hanno Stinshoff

Nicolaus Copernicus University, Academia Copernicana, Faculty of Physics, Astronomy and Informatics

September 17, 2024

Motivation

Figure: Phenomenological illustration of how young massive clusters could evolve into globular clusters, creating multiple periods of star formation

Figure: Population with Kroupa IMF, 500 M_{\odot} upper mass limit, $Z = 0.25 Z_{\odot}$, L_{SC} = $\int \log(0.5 * \dot{M} * v_{wind}^2)$

Results [1] Stinshoff et al. (in prep.)

Figure: Population with Kroupa IMF, $\sim 500~M_{\odot}$ upper mass limit, $Z=0.0125~Z_{\odot},~L_{SC}=\int \log(0.5*\dot{M}*v_{wind}^2)$

- Improvement on/Choices of the wind prescriptions
- Addition of more initial rotational velocities
- Investigations of different IMFs

- [1] H. N. Stinshoff et al. (in prep.)
- [2] D. Szécsi and R. Wünsch: "Role of Supergiants in the Formation of Globular Clusters", The Astrophysical Journal, vol. 871, January 2019, p. 20, doi:10.3847/1538-4357/aaf4be
- [3] D. Szécsi, P. Agrawal, R. Wünsch, and N. Langer: "Bonn Optimized Stellar Tracks (BoOST) - Simulated populations of massive and very massive stars for astrophysical applications", Astronomy & Astrophysics, vol. 658, 2022, doi:10.1051/0004-6361/202141536

Sources

- [4] H. J. G. L. M. Lamers, T. P. Snow and D. M. Lindholm: "Terminal Velocities and the Bistability of Stellar Winds", The Astrophysical Journal, vol. 455, 1995. doi:10.1086/176575.
- [5] J. Krtička, J. Kubát, and I. Krtičková: "New mass-loss rates of B supergiants from global wind models", Astronomy & Astrophysics, vol. 647, 2021, doi:10.1051/0004-6361/202039900
- [6] A. A. C. Sander and J. S. Vink: "On the nature of massive helium star winds and Wolf-Rayet-type mass-loss", Monthly Notices of the Royal Astronomical Society, vol. 499, 2020, https://doi.org/10.1093/mnras/staa2712
- [7] I. D. Howarth and R. K. Prinja: "The Stellar Winds of 203 Galactic O Stars: A Quantitative Ultraviolet Survey", The Astrophysical Journal Supplement Series, vol. 69, 1989, doi:10.1086/191321.

Hanno Stinshoff (NCU - AC)

6/6

Figure: Population with Kroupa IMF, 500 M $_{\odot}$ upper mass limit, $Z=0.25\,Z_{\odot}$

6/6

Results [1] Stinshoff et al. (in prep.)

Figure: Population with Kroupa IMF, \sim 500 M $_{\odot}$ upper mass limit, $Z = 0.0125 Z_{\odot}$

Prescriptions [1] Stinshoff et al. (in prep.)

Figure 13. The ratio of \dot{M} and v_{∞} as a function of $-\log (1 - \Gamma_e)$, depicting an essentially *Z*-independent slope for pure WR-type winds.

Figure: Wind prescription derived from Sander & Vink 2020

$$v_{\infty}/v_{esc} = 0.58 + 2.04 \log(R_*/R_{\odot})$$

Wind prescription derived from Howarth & Prinja 1989

э

Outlook [2] Szécsi & Wünsch (2019)

BoOST format [3] Szécsi et al., 2022

Hanno Stinshoff (NCU - AC)

September 17, 2024 6

э

< □ > < □ > < □ > < □ > < □ >

Parameter study [2] Stinshoff et al., in prep.

< □ > < @ >

40-0.2-all-smc

40-0.1-all-smc

40-0.05-all-smc

log(Temperature) [Kelvin]

Work in Progress [2] Stinshoff et al., in prep.

Figure: $v_{rot} = 400 \ km/s$, $Z = Z_{IZw18}$

э

æ

September 17, 2024 6

э

Extra

æ

Ξ.

<ロト < 四ト < 三ト < 三ト

September 17, 2024

イロト イヨト イヨト イヨト

э

Mass in M_{sol}

3

・ロト ・日下・ ・日下

æ

æ

500

Hanno Stinshoff (NCU - AC)

NewBoOST

September 17, 2024

3

Hanno Stinshoff (NCU - AC)

NewBoOST

September 17, 2024 6

Hanno Stinshoff (NCU - AC)

NewBoOST

September 17, 2024 6,

- young massive clusters have winds stellar winds → collisions → shocked wind → outflow
- thermal instability, rapid cooling if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity ⇒ clumps fall to the centre; accumulation ⇒ self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- L_{SC} , $\dot{M}_{SC} \leftarrow M_{1G}$, stellar evolution tracks
- R_{SC} + eventually radial profile (R_c, β)

Credit: R. Wünsch (ASU)

э

STATUS RESOURCES DOCUMENTATION						
The BONNSAI project Image: Choose stellar Models: Choose stellar model.						
	Observables	Correlations	Priors	Output Setting	Further Settings	Submit Page
Welcome to the BONNSAI web-service. BONNSAI, the BONN Stellar Astrophysics Interface, is a Bayesian statistical method that is capable of comparing all available observables simultaneously to stellar models while taking observed uncertainties and prior knowledge such as initial mass functions and distributions of stellar rotational velocities into account. BONNSAI can be used to (1) determine probability distributions of fundamental stellar parameters such as initial masses and stellar ages from complex datasets, (2) predict stellar parameters that were not yet observationally determined and (3) test stellar models to further advance our understanding of stellar evolution. A full description of BONNSAI Is published in Schnedierst al. (2014, JABA.570, C65).						
There are only four steps involved to submit a job:						
1 Select stellar models to which the observables shall be matched.						
2 Provide the observables including their uncertainties.						
3 Choose priors and output quantities.						
4 Submit your request.						
Once your job is finished, you will receive an email with a link to your results.						

To start submitting a job, select the stellar models to match your observables to from the above drop-down menu. In case you have any questions, comments or suggestions do not hesitate to contact us. We hope you enjoy using BONNSAI.

3

・ロト ・四ト ・ヨト ・ヨト