Expanding the BoOST massive star models to explain the formation of globular clusters - Midterm Evaluation of Hanno Stinshoff -

Hanno Stinshoff

Nicolaus Copernicus University, Academia Copernicana, Faculty of Physics, Astronomy and Informatics

September 23, 2024

Expanding the BoOST model grids

2

э

The new models - The BoOST format [1] Stinshoff et al., in prep., [2] Szécsi et al.,

Figure: $v_{rot} = 200 \text{ km/s}, Z = 0.5 \oplus Z_{SMC} \rightarrow \text{ (B)}$

Hanno Stinshoff (NCU - AC)

September 23, 2024

Hanno Stinshoff (NCU - AC)

September 23, 2024

Hanno Stinshoff (NCU - AC)

Midterm Hanno Stinshoff

September 23, 2024

Hanno Stinshoff (NCU - AC)

September 23, 2024

The new models - BoOSTed HRD [1] Stinshoff et al., in prep.

Figure: $v_{rot} = 200 \text{ km/s}, Z = 0.5 \cdot Z_{SMC}$

The new models - BoOSTed HRD [1] Stinshoff et al., in prep.

Figure: $v_{rot} = 300 \ km/s$, $Z = Z_{IZw18}$

▶ ∢ ∃ ▶

The new models - BoOSTed HRD [1] Stinshoff et al., in prep.

Figure: $v_{rot} = 300 \text{ km/s}$, $Z = 0.02 \cdot Z_{SMC}$

Expanding the BoOST model grids Investigating the winds of stellar populations with varying wind descriptions

Globular Clusters [3] Caretta et al., 2009, [4] Szécsi & Wünsch, 2019

Hanno Stinshoff (NCU - AC)

September 23, 2024

Application [4] Szécsi & Wünsch, 2019

Application [4] Szécsi & Wünsch, 2019

Figure: Population with Kroupa IMF (cf. [5]), 0.02 Z_{MW} (red) and $Z = 0.5 Z_{MW}$ (green), $L_{SC} = \int \log(0.5 * \dot{M} * v_{wind}^2)$

Figure: Population with Kroupa IMF (cf. [5]), 500 M_{\odot} upper mass limit, $Z = 0.5 Z_{MW}$, $L_{SC} = \int \log(0.5 * \dot{M} * v_{wind}^2)$

September 23, 2024

Results [1] Stinshoff et al., in prep.

Figure: Population with Kroupa IMF (cf. [5]), \sim 500 M $_{\odot}$ upper mass limit, 0.02 $Z_{MW},$ $L_{SC} = \int log(0.5 * \dot{M} * v_{wind}^2)$

September 23, 2024 15 / 20

Expanding the BoOST model grids

Investigating the winds of stellar populations with varying wind descriptions

Creating new populations to investigate the mass budget for second generations of star formation

- Improvement on/Choices of the wind prescriptions
- Improving the resolution in critical areas of the parameter space
- Investigations of different IMFs

Wind Prescriptions [1] Stinshoff et al., in prep., [2] Szécsi et al., 2022, [6], [7], [8], [9], [10] (see figure

legend)

Wind Prescriptions [1] Stinshoff et al., in prep., [2] Szécsi et al., 2022, [6], [7], [8], [9], [10] (see figure

legend)

- [1] H. N. Stinshoff et al. (in prep.)
- [2] D. Szécsi, P. Agrawal, R. Wünsch, and N. Langer: "Bonn Optimized Stellar Tracks (BoOST) - Simulated populations of massive and very massive stars for astrophysical applications", Astronomy & Astrophysics, vol. 658, 2022, doi:10.1051/0004-6361/202141536
- [3] E. Carretta, A. Bragaglia, R. G. Gratton, S. Lucatello, G. Catanzaro, F. Leone, M. Bellazzini, R. Claudi, V. D'Orazi, Y. Momany, S. Ortolani, E. Pancino, G. Piotto, A. Recio-Blanco, and E. Sabbi: "Na-O anticorrelation and HB VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra", Astronomy & Astrophysics, vol. 505, July 2009, doi:10.1051/0004-6361/200912096
- [4] D. Szécsi and R. Wünsch: "Role of Supergiants in the Formation of Globular Clusters", The Astrophysical Journal, vol. 871, January 2019, p. 20, doi:10.3847/1538-4357/aaf4be

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sources

- [5] P. Kroupa: "On the variation of the initial mass function", Monthly Notices of the Royal Astronomical Society, vol. 322, 2001, doi:10.1046/j.1365-8711.2001.04022.x.
- [6] H. J. G. L. M. Lamers, T. P. Snow, and D. M. Lindholm: "Terminal Velocities and the Bistability of Stellar Winds", The Astrophysical Journal, vol. 455, 1995. doi:10.1086/176575.
- [7] A. A. C. Sander and J. S. Vink: "On the nature of massive helium star winds and Wolf-Rayet-type mass-loss", Monthly Notices of the Royal Astronomical Society, vol. 499, 2020, https://doi.org/10.1093/mnras/staa2712
- [8] I. D. Howarth and R. K. Prinja: "The Stellar Winds of 203 Galactic O Stars: A Quantitative Ultraviolet Survey", The Astrophysical Journal Supplement Series, vol. 69, 1989, doi:10.1086/191321.

- [9] J. Krtička, J. Kubát, and I. Krtičková: "New mass-loss rates of B supergiants from global wind models", Astronomy & Astrophysics, vol. 647, 2021, doi:10.1051/0004-6361/202039900
- [10] C. Leitherer, D. Schaerer, J. D. Goldader, R. M. G. Delgado, C. Robert, D. F. Kune, D. F. de Mello, D. Devost, and T. M. Heckman: "Starburst99: Synthesis Models for Galaxies with Active Star Formation", The Astrophysical Journal Supplement Series, vol. 123, no. 1, IOP, pp. 3-40, 1999, doi:10.1086/313233
- [11] T. Maschberger: "On the function describing the stellar initial mass function", Monthly Notices of the Royal Astronomical Society, vol. 429, 2013, doi:10.1093/mnras/sts479

イロト 不得下 イヨト イヨト

Midterm Hanno Stinshoff

September 23, 2024

20 / 20

3

Image: A matrix

< ∃→

æ

September 23, 2024

20 / 20

3

September 23, 2024

э

э

Extra

< 47 ▶

2

∃ →

Ξ.

<ロト < 四ト < 三ト < 三ト

September 23, 2024

< □ > < □ > < □ > < □ > < □ >

20 / 20

æ

Mass in M_{sol}

< ≣⇒ September 23, 2024

・ロト ・日下・ ・日下

3

0 / 20

æ

æ

Midterm Hanno Stinshoff

September 23, 2024 20

= 990

Midterm Hanno Stinshoff

September 23, 2024 20

Midterm Hanno Stinshoff

September 23, 2024 20 /

- young massive clusters have winds stellar winds → collisions → shocked wind → outflow
- thermal instability, rapid cooling if the cluster is massive and compact enough
- dense warm/cold clumps are formed cluster gravity ⇒ clumps fall to the centre; accumulation ⇒ self-shielding against EUV radiation
- 2nd generation (2G) stars formed enriched by products of massive stars chem. evolution

Basic parameters:

- L_{SC} , $\dot{M}_{SC} \leftarrow M_{1G}$, stellar evolution tracks
- R_{SC} + eventually radial profile (R_c, β)

Credit: R. Wünsch (ASU)

STATUS RESOURCES DOCUMENTATION							
The BONNSAI project							
	Observables	Correlations	Priors	Output Setting	Further Settings	Submit Page	
Welcome to the BONNSAI web-service. BONNSAI, the BONN Stellar Astrophysics Interface, is a Bayesian statistical method that is capable of comparing all available observables simultaneously to stellar models while taking observed uncertainties and prior knowledge such as initial mass functions and distributions of stellar rotational velocities into account. BONNSAI can be used to (1) determine probability distributions of fundamental stellar parameters such as initial masses and stellar ages from complex datasets, (2) predict stellar parameters that were not yet observationally determined and (3) test stellar models to further advance our understanding of stellar evolution. A full description of BONNSAI is published in <u>Schneider et al. (2014, ABA, 570, 66</u>).							
There are only four steps involved to submit a job:							
1 Select stellar models to which the observables shall be matched.							
2 Provide the observables including their uncertainties.							
3 Choose priors and output quantities.							
Submit your request.							

Once your job is finished, you will receive an email with a link to your results.

To start submitting a job, select the stellar models to match your observables to from the above drop-down menu. In case you have any questions, comments or suggestions do not hesitate to contact us. We hope you enjoy using BONNSAI.

æ

イロト イヨト イヨト イヨト