Skeleton Hamiltonian dynamics *Mathematics of Gravitation II September 2003, Warsaw*

G. Faye*, P. Jaranowski[†], G. Schäfer*

G.Faye@tpi.uni-jena.de

* Theoretisch Physikalisches Institut, FSU Jena
 [†] University of Biał ystok

∇ Skeleton Hamiltonian dynamics – p.1/29

A Wilson-like approach

- A Wilson-like approach
- Standard Hamiltonian description of *N* black holes

- A Wilson-like approach
- Standard Hamiltonian description of *N* black holes
- Effective skeleton Hamiltonian

- A Wilson-like approach
- Standard Hamiltonian description of *N* black holes
- Effective skeleton Hamiltonian
- Application to circular motion

A WILSON-LIKE APPROACH

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

initial conditions

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

- initial conditions
- sequences of quasi-equilibrium;
 determination of the last stable circular orbit

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

- initial conditions
- sequences of quasi-equilibrium;
 determination of the last stable circular orbit

other investigations on binary dynamics: head-on collisions, ...

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

- initial conditions
- sequences of quasi-equilibrium; determination of the last stable circular orbit

other investigations on binary dynamics: head-on collisions, ...

Existing models: numerical computations exclusively

- \longleftrightarrow use of Wilson approximation in the 2 latter cases
 - = 3-metric γ_{ij} conformally flat

Context: binary black-hole dynamics before/in coalescence; in particular, investigation of

- initial conditions
- sequences of quasi-equilibrium; determination of the last stable circular orbit

other investigations on binary dynamics: head-on collisions, ...

Existing models: numerical computations exclusively \leftrightarrow use of Wilson approximation in the 2 latter cases = 3-metric γ_{ij} conformally flat

Objective: finding an analytical counterpart of Wilson

• Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...

- Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...
- Agreement with the Brill-Lindquist solution in the limit when the momenta $p_{Ai} = 0$

- Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...
- Agreement with the Brill-Lindquist solution in the limit when the momenta $p_{Ai} = 0$
- Agreement with general relativity

- Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...
- Agreement with the Brill-Lindquist solution in the limit when the momenta $p_{Ai} = 0$
- Agreement with general relativity
 - at the 1st post-Newtonian order

- Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...
- Agreement with the Brill-Lindquist solution in the limit when the momenta $p_{Ai} = 0$
- Agreement with general relativity
 - at the 1st post-Newtonian order
 - in the test particle limit

- Conformal flatness: $\gamma_{ij} \propto \delta_{ij}$ in some splitting \hookrightarrow mere choice for initial conditions but a priori not physical...
- Agreement with the Brill-Lindquist solution in the limit when the momenta $p_{Ai} = 0$
- Agreement with general relativity
 - at the 1st post-Newtonian order
 - in the test particle limit
- Can be derived from a Hamiltonian \rightarrow investigations performed in the ADM framework

Point mass assumption:

Point mass assumption:

• possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} - \mathbf{x}_A(t))$

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Elements of "justifications"

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Elements of "justifications"

• gives the correct equations of motion at order $1/c^4$ \hookrightarrow correct 2nd post-Newtonian (2PN) dynamics

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Elements of "justifications"

- gives the correct equations of motion at order $1/c^4$ \hookrightarrow correct 2nd post-Newtonian (2PN) dynamics
- gives unique result at 3PN when using dimensional regularisation

 \leftarrow analytic continuation to dimension d = 3 possible

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Elements of "justifications"

- gives the correct equations of motion at order $1/c^4$ \hookrightarrow correct 2nd post-Newtonian (2PN) dynamics
- gives unique result at 3PN when using dimensional regularisation
 - \leftarrow analytic continuation to dimension d = 3 possible
- gives the correct Brill-Lindquist solution in the limit $p_{Ai} = 0$

Point mass assumption:

- possibility of representing the "centre of the field" A by means of $\delta_A = \delta(\mathbf{x} \mathbf{x}_A(t))$
- masses = parameters m_A entering $T_{\text{test particle}}^{\mu\nu}$
 - "Schwarzschild" mass for non-rotating spherically symmetric bodies

Elements of "justifications"

- gives the correct equations of motion at order $1/c^4$ \hookrightarrow correct 2nd post-Newtonian (2PN) dynamics
- gives unique result at 3PN when using dimensional regularisation
 - \leftarrow analytic continuation to dimension d = 3 possible
- gives the correct Brill-Lindquist solution in the limit $p_{Ai} = 0$
- supported by the "effacement" principle

STANDARD ADM DESCRIPTION

(3+1) splitting:

(3+1) splitting:

• event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst

(3+1) splitting:

- event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst
- $g_{ij} = \gamma_{ij} = 3$ -metric of Σ Latin indices = 3-indices lowered and raised with γ_{ij} and $\gamma^{ij} \equiv \gamma_{ij}^{-1}$

(3+1) splitting:

- event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst
- $g_{ij} = \gamma_{ij} = 3$ -metric of Σ Latin indices = 3-indices lowered and raised with γ_{ij} and $\gamma^{ij} \equiv \gamma_{ij}^{-1}$ • $(g_{0i}g_{0j}\gamma^{ij} - g_{00})^{\frac{1}{2}} = N = \text{lapse}$

$$g_{0i} = N_i$$
 = shift
ADM variables

(3+1) splitting:

- event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst
- g_{ij} = γ_{ij} = 3-metric of Σ Latin indices = 3-indices lowered and raised with γ_{ij} and γ^{ij} ≡ γ⁻¹_{ij}
 (g_{0i}g_{0j}γ^{ij} - g₀₀)^{1/2} = N = lapse g_{0i} = N_i = shift

Introduction of the canonical variables:

ADM variables

(3+1) splitting:

- event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst
- g_{ij} = γ_{ij} = 3-metric of Σ Latin indices = 3-indices lowered and raised with γ_{ij} and γ^{ij} ≡ γ⁻¹_{ij}
 (g_{0i}g_{0j}γ^{ij} - g₀₀)^{1/2} = N = lapse g_{0i} = N_i = shift

Introduction of the canonical variables:

•
$$(x_A^i, p_{Ai})$$
 = matter conjugate variables

ADM variables

(3+1) splitting:

- event $x^{\mu} = (\mathbf{x} = x^i, t = x^0/c)$ hyper-surface Σ : t = cst
- $g_{ij} = \gamma_{ij} = 3$ -metric of Σ Latin indices = 3-indices lowered and raised with γ_{ij} and $\gamma^{ij} \equiv \gamma_{ij}^{-1}$ • $(g_{0i}g_{0j}\gamma^{ij} - g_{00})^{\frac{1}{2}} = N = \text{lapse}$

$$g_{0i} = N_i$$
 = shift

Introduction of the canonical variables:

• (x_A^i, p_{Ai}) = matter conjugate variables • (γ_{ij}, π^{ij}) = field conjugate variables

Hamiltonian for N point-masses

$$\begin{split} H(x_A^i, p_{Ai}, \gamma_{ij}, \pi^{ij}) &= \frac{c^4}{16\pi G} \bigg[\int d^3 \mathbf{x} \left(N\mathcal{H} + N^i \mathcal{J}_i \right) \\ &\quad + \int d^3 \mathbf{x} \, \partial_i (\partial_j \gamma_{ij} - \partial_i \gamma_{jj}) \bigg] \end{split}$$
with $\mathcal{H} &= -\sqrt{\gamma} \mathbf{R} + \frac{1}{\sqrt{\gamma}} \left(\pi_j^i \pi_i^j - \frac{1}{2} (\pi_i^i)^2 \right) \\ &\quad + \frac{16\pi G}{c^2} \sum_{A=1}^N \left(m_A^2 + \frac{p_{Ai} p_{Ai}}{c^2} \right)^{\frac{1}{2}} \delta_A \end{split}$

[super-Hamiltonian]

and
$$\mathcal{J}_i = -2\partial_j \pi^j_i + \pi^{kl} \partial_i \gamma_{kl} - \frac{16\pi G}{c^3} \sum_{A=1}^N p_{Ai} \delta_A$$

[supermomentum]

Necessitate:

Necessitate:

• constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$

Necessitate:

- constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$
- gauge choice

ADM gauge:
$$\partial_j \left(\gamma_{ij} - rac{\delta_{ij}}{3}\gamma_{kk}
ight) = 0$$
 $\pi^{ii} = 0$

Necessitate:

- constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$
- gauge choice

ADM gauge:
$$\partial_j \left(\gamma_{ij} - \frac{\delta_{ij}}{3} \gamma_{kk} \right) = 0$$
 $\pi^{ii} = 0$
quasi-isotropic condition

Necessitate:

- constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$
- gauge choice

ADM gauge:
$$\partial_j \left(\gamma_{ij} - \frac{\delta_{ij}}{3} \gamma_{kk} \right) = 0$$
 $\pi^{ii} = 0$
quasi-isotropic condition

decomposition of the field variables

Necessitate:

- constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$
- gauge choice

ADM gauge:
$$\partial_j \left(\gamma_{ij} - \frac{\delta_{ij}}{3} \gamma_{kk} \right) = 0$$
 $\pi^{ii} = 0$ quasi-isotropic condition

- decomposition of the field variables
 - decomposition of γ_{ij} for a conformal factor Ψ^4 :

$$\gamma_{ij} = \Psi^4 \delta_{ij} + h^{ ext{TT}}_{ij}$$
 with $\partial_j h^{ ext{TT}}_{ij} = 0$

Necessitate:

- constraint equations $\mathcal{H} = 0$ and $\mathcal{J}_i = 0$
- gauge choice

ADM gauge:
$$\partial_j \left(\gamma_{ij} - \frac{\delta_{ij}}{3} \gamma_{kk} \right) = 0$$
 $\pi^{ii} = 0$ quasi-isotropic condition

- decomposition of the field variables
 - decomposition of γ_{ij} for a conformal factor Ψ^4 :

$$\gamma_{ij}=\Psi^4\delta_{ij}+h^{
m TT}_{ij}$$
 with $\partial_j h^{
m TT}_{ij}=0$

• field momentum decomposition

$$\pi^{ij} = \mathsf{STF}(2\partial_i\pi^j) + \pi^{ij}_{\mathrm{TT}}$$
 with $\partial_j\pi^{ij}_{\mathrm{TT}} = 0$

• Deduction of ϕ and π^{ij} from the constraint equations

$${\cal H}=0$$
 ${\cal J}_i=0$

• Deduction of ϕ and π^{ij} from the constraint equations

$${\cal H}=0 \qquad \qquad {\cal J}_i=0$$

• New conjugate variables h_{ij}^{TT} and π_{TT}^{ij}

• Deduction of ϕ and π^{ij} from the constraint equations

$${\cal H}=0$$
 ${\cal J}_i=0$

- New conjugate variables $h_{ij}^{\rm TT}$ and $\pi_{\rm TT}^{ij}$
- Final Hamiltonian

$$egin{aligned} H(x_A^i,p_{Ai},h_{ij}^{ ext{TT}},\pi_{ ext{TT}}^{ij}) &= rac{c^4}{16\pi G}\int d^3 ext{x}~\partial_i(\partial_j\gamma_{ij}-\partial_i\gamma_{jj}) \ &= -rac{c^4}{2\pi G}\int d^3 ext{x}~\Delta\Psi \end{aligned}$$

EFFECTIVE SKELETON HAMILTONIAN

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

possible (non physical) choice for initial conditions

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

- possible (non physical) choice for initial conditions
- 2PN order error in the acceleration

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

- possible (non physical) choice for initial conditions
- 2PN order error in the acceleration

consequences:

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

- possible (non physical) choice for initial conditions
- 2PN order error in the acceleration

consequences:

• $\gamma_{ij} = \Psi^4 \delta_{ij}$

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

- possible (non physical) choice for initial conditions
- 2PN order error in the acceleration

consequences:

•
$$\gamma_{ij}=\Psi^4\delta_{ij}$$

• $H = H(x_A^i, p_{Ai})$ = Hamiltonian of the two black holes

 $\gamma_{ij} \propto \delta_{ij}$:

 \leftrightarrow skip the complications due to the $h_{ij}^{TT} \neq 0$ dynamics lose of accuracy if v/c large *but* good in the static limit

- possible (non physical) choice for initial conditions
- 2PN order error in the acceleration

consequences:

•
$$\gamma_{ij}=\Psi^4\delta_{ij}$$

• $H = H(x_A^i, p_{Ai})$ = Hamiltonian of the two black holes

•
$$\pi^{ij} = \gamma^{ik} \pi^{j}_{k} = \Psi^{-4} \pi^{i}_{j}$$

 $\Rightarrow \pi^{i}_{i} = 0 \text{ (maximal slicing)}$
 $\pi^{i}_{j} \text{ STF (symmetric trace-free)}$

$$\begin{split} \Delta \Psi &= -\frac{1}{8\Psi^7} \pi^i_{\ j} \pi^j_{\ i} - \frac{2\pi G}{c^2} \sum_{A=1}^N m_A \delta_A \Psi^{-1} \left[1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right]^{\frac{1}{2}} \\ \partial_j \pi^i_{\ j} &= -\frac{8\pi G}{c^3} \sum_{A=1}^N p_{iA} \delta_A \end{split}$$

$$\begin{split} \Delta \Psi &= -\frac{1}{8\Psi^7} \pi^i_{\ j} \pi^j_{\ i} - \frac{2\pi G}{c^2} \sum_{A=1}^N m_A \delta_A \Psi^{-1} \left[1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right]^{\frac{1}{2}} \\ \partial_j \pi^i_{\ j} &= -\frac{8\pi G}{c^3} \sum_{A=1}^N p_{iA} \delta_A \end{split}$$

Program

$$\begin{split} \Delta\Psi &= -\frac{1}{8\Psi^7} \pi^i_{\ j} \pi^j_{\ i} - \frac{2\pi G}{c^2} \sum_{A=1}^N m_A \delta_A \Psi^{-1} \left[1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right]^{\frac{1}{2}} \\ \partial_j \pi^i_{\ j} &= -\frac{8\pi G}{c^3} \sum_{A=1}^N p_{iA} \delta_A \end{split}$$

Program

solve the super-momentum constraint

$$\begin{split} \Delta\Psi &= -\frac{1}{8\Psi^7} \pi^i_{\ j} \pi^j_{\ i} - \frac{2\pi G}{c^2} \sum_{A=1}^N m_A \delta_A \Psi^{-1} \left[1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right]^{\frac{1}{2}} \\ \partial_j \pi^i_{\ j} &= -\frac{8\pi G}{c^3} \sum_{A=1}^N p_{iA} \delta_A \end{split}$$

Program

- solve the super-momentum constraint
- inject the solution in $\mathcal{H} = 0$

$$\begin{split} \Delta\Psi &= -\frac{1}{8\Psi^7} \pi^i_{\ j} \pi^j_{\ i} - \frac{2\pi G}{c^2} \sum_{A=1}^N m_A \delta_A \Psi^{-1} \left[1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right]^{\frac{1}{2}} \\ \partial_j \pi^i_{\ j} &= -\frac{8\pi G}{c^3} \sum_{A=1}^N p_{iA} \delta_A \end{split}$$

Program

- solve the super-momentum constraint
- inject the solution in $\mathcal{H}=0$
- solve the super-Hamiltonian constraint

 $(\pi^i_{j})^{\mathsf{TT}} = \phi(\pi^i_{j})^{\parallel} + 2\tilde{\pi}^{ij}_{(5)} + \mathcal{O}\left(\frac{1}{c^7}\right) = \mathcal{O}\left(\frac{1}{c^5}\right) \longrightarrow \begin{array}{c} \text{contributes to the} \\ 3\mathsf{PN} \text{ dynamics} \end{array}$

 $\begin{aligned} (\pi^i_{\ j})^{\mathsf{TT}} &= \phi(\pi^i_{\ j})^{\parallel} + 2\tilde{\pi}^{ij}_{(5)} + \mathcal{O}\left(\frac{1}{c^7}\right) = \mathcal{O}\left(\frac{1}{c^5}\right) &\to \overset{\text{contributes to the}}{\operatorname{3PN dynamics}} \\ & \Downarrow \end{aligned}$

• dominated by h_{ij}^{TT} in the PN regime even for strong fields

may be neglected — zero for (unphysical) initial conditions

 $(\pi_{j}^{i})^{\mathsf{TT}} = \phi(\pi_{j}^{i})^{\parallel} + 2\tilde{\pi}_{(5)}^{ij} + \mathcal{O}\left(\frac{1}{c^{7}}\right) = \mathcal{O}\left(\frac{1}{c^{5}}\right) \quad \rightarrow \underset{\mathsf{3PN dynamics}}{\mathsf{contributes to the}}$

• dominated by h_{ij}^{TT} in the PN regime even for strong fields

may be neglected — zero for (unphysical) initial conditions

$$\pi^i_{\ j}$$
 under the form ${
m STF}(2\partial_i V_j)\equiv 2\partial_{(i}V_{j)}-rac{2}{3}\delta_{ij}\partial_k V_k$

$$(\pi_{j}^{i})^{\mathsf{TT}} = \phi(\pi_{j}^{i})^{\parallel} + 2\tilde{\pi}_{(5)}^{ij} + \mathcal{O}\left(\frac{1}{c^{7}}\right) = \mathcal{O}\left(\frac{1}{c^{5}}\right) \longrightarrow \begin{array}{l} \text{contributes to the} \\ 3\mathsf{PN} \text{ dynamics} \\ \Downarrow \end{array}$$

• dominated by h_{ij}^{TT} in the PN regime even for strong fields

may be neglected — zero for (unphysical) initial conditions

$$\pi_{j}^{i} \text{ under the form STF}(2\partial_{i}V_{j}) \equiv 2\partial_{(i}V_{j)} - \frac{2}{3}\delta_{ij}\partial_{k}V_{k}$$
$$\Rightarrow \Delta V_{i} = -\frac{8\pi G}{c^{3}}\sum_{A=1}^{N} \left[p_{Ai}\delta_{A} - \frac{1}{4}p_{Aj}\partial_{ij}\Delta^{-1}\delta_{A}\right]$$
$$V_{i} = \frac{G}{2}\sum_{A=1}^{N} \left[\frac{2p_{Ai}}{2} - \frac{1}{2}\partial_{ij}r_{A}p_{Aj}\right]$$

$$V_i = \frac{1}{c^3} \sum_{A=1} \left[\frac{1}{r_A} - \frac{1}{4} \partial_{ij} r_A p_{Aj} \right]$$

$$(\pi_{j}^{i})^{\mathsf{TT}} = \phi(\pi_{j}^{i})^{\parallel} + 2\tilde{\pi}_{(5)}^{ij} + \mathcal{O}\left(\frac{1}{c^{7}}\right) = \mathcal{O}\left(\frac{1}{c^{5}}\right) \quad \rightarrow \underset{\mathsf{3PN dynamics}}{\mathsf{contributes to the}}$$

• dominated by h_{ij}^{TT} in the PN regime even for strong fields

may be neglected — zero for (unphysical) initial conditions

$$\pi_{j}^{i} \text{ under the form } \operatorname{STF}(2\partial_{i}V_{j}) \equiv 2\partial_{(i}V_{j)} - \frac{2}{3}\delta_{ij}\partial_{k}V_{k}$$
$$\Rightarrow \Delta V_{i} = -\frac{8\pi G}{c^{3}}\sum_{A=1}^{N} \left[p_{Ai}\delta_{A} - \frac{1}{4}p_{Aj}\partial_{ij}\Delta^{-1}\delta_{A}\right]$$
$$V_{i} = -\frac{6}{2}\sum_{A=1}^{N} \left[2p_{Ai} - \frac{1}{2}p_{Aj}\partial_{ij}\Delta^{-1}\delta_{A}\right]$$

$$V_i = \frac{\alpha}{c^3} \sum_{A=1} \left[\frac{2p_{Ai}}{r_A} - \frac{1}{4} \partial_{ij} r_A p_{Aj} \right]$$

regular at $r_A = |\mathbf{x} - \mathbf{x}_A| = 0$ for appropriate dimensions agreement with Bowen & York

Flesh and skeleton

$$egin{aligned} \Psi^{-7} \pi^i_{\ j} \pi^j_{\ i} &= \Psi^{-7} \pi^i_{\ j} ext{STF}(2 \partial_i V_j) \ &= \Psi^{-7} ig(- 2 V_i \partial_j \pi^i_{\ j} + 2 \partial_j (V_i \pi^i_{\ j}) ig) = \mathcal{O} \left(rac{1}{c^6}
ight) \end{aligned}$$

Flesh and skeleton

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ & \swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Flesh and skeleton

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ & \swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Properties of the flesh terms

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ & \swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Properties of the flesh terms

 \bullet corresponds to a 2PN effect in γ_{ij} and H

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ & \swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Properties of the flesh terms

- corresponds to a 2PN effect in γ_{ij} and H
- vanishes when $p_{Ai} = 0$

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ & \swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Properties of the flesh terms

- corresponds to a 2PN effect in γ_{ij} and H
- vanishes when $p_{Ai} = 0$
- vanishes in the test body limit

$$\begin{split} \Psi^{-7} \pi^{i}_{\ j} \pi^{j}_{\ i} &= \Psi^{-7} \pi^{i}_{\ j} \mathrm{STF}(2\partial_{i} V_{j}) \\ &= \Psi^{-7} \big(-2V_{i} \partial_{j} \pi^{i}_{\ j} + 2\partial_{j} (V_{i} \pi^{i}_{\ j}) \big) = \mathcal{O} \left(\frac{1}{c^{6}} \right) \\ &\swarrow \\ & \mathsf{skeleton} \\ \end{split}$$

Properties of the flesh terms

- corresponds to a 2PN effect in γ_{ij} and H
- vanishes when $p_{Ai} = 0$
- vanishes in the test body limit
- contains poles in dimensional regularisation
 - \leftarrow compensated by poles in h_{ij}^{TT} in Einstein theory

3rd ingredient: $2\partial_j(V_i\pi^i_j) \rightarrow 0$

elimination of the flesh term

$$\Psi^{-7}\pi^i_{\ j}\pi^j_{\ i} \to \Psi^{-7}\big(-2V_j\partial_i\pi^i_{\ j}\big) = \frac{16\pi G}{c^3}\sum_{A=1}^N\Psi^{-7}_{\mathbf{x}=\mathbf{x}_A}p_{Aj}V_j\delta_A$$

3rd ingredient: $2\partial_j(V_i\pi^i_j) \to 0$

elimination of the flesh term

$$\Psi^{-7}\pi^i_{\ j}\pi^j_{\ i} \to \Psi^{-7}\big(-2V_j\partial_i\pi^i_{\ j}\big) = \frac{16\pi G}{c^3}\sum_{A=1}^N\Psi^{-7}_{\mathbf{x}=\mathbf{x}_A}p_{Aj}V_j\delta_A$$

- -

structure of Ψ

$$\begin{cases} \Delta \Psi = \sum_{A} f_A(\mathbf{x}) \delta_A \\ \Rightarrow \quad \Psi = 1 + \sum_{A=1}^{N} \frac{G \alpha_A}{2r_A c^2} \\ \Psi = 1 + \mathcal{O}\left(\frac{1}{r}\right) \text{ at spatial infinity} \end{cases}$$

3rd ingredient: $2\partial_j(V_i\pi^i_j) \to 0$

elimination of the flesh term

$$\Psi^{-7}\pi^i_j\pi^j_i \to \Psi^{-7}(-2V_j\partial_i\pi^i_j) = \frac{16\pi G}{c^3}\sum_{A=1}^N\Psi^{-7}_{\mathbf{x}=\mathbf{x}_A}p_{Aj}V_j\delta_A$$

structure of Ψ

$$\begin{cases} \Delta \Psi = \sum_{A} f_A(\mathbf{x}) \delta_A \\ \Rightarrow \quad \Psi = 1 + \sum_{A=1}^{N} \frac{G \alpha_A}{2r_A c^2} \end{cases}$$

skeleton super-Hamiltonian constraint

 \hookrightarrow obtained by inserting ϕ into $\mathcal H$

Hamiltonian constraint

$$\begin{split} -\frac{c^2}{2\pi G} \Delta \Psi &= \sum_{A=1}^N \alpha_A \delta_A \\ &= \sum_{A=1}^N \left\{ m_A \left(1 + \sum_{B \neq A} \frac{G \alpha_B}{2r_{AB}c^2} \right)^{-1} \left[1 + \left(1 + \sum_{C \neq A} \frac{G \alpha_C}{2r_{AC}c^2} \right)^{-4} \frac{p_{Ai}p_{Ai}}{m_A^2c^2} \right] \right. \\ &+ \left(1 + \sum_{B \neq A} \frac{G \alpha_B}{r_{AB}c^2} \right)^{-7} \frac{p_{Ai}V_{Ai}}{c} \right\} \delta_A \end{split}$$

Equation for the lapse

(evolution of π^{ij} in a (3+1) splitting: $\partial_t \pi^{ij} = F^{ij}[\gamma_{kl}, N_k, x_A^k, p_{Ak}]$ gauge condition: $\pi^{kk} = 0$ useful formulae: $D_i D_i N = 2 \partial_i N \partial_i \ln \Psi + \Delta N$, $R \sqrt{\gamma} = -8 \Psi \Delta \Psi$

₩

Equation for the lapse

(evolution of π^{ij} in a (3+1) splitting: $\partial_t \pi^{ij} = F^{ij}[\gamma_{kl}, N_k, x_A^k, p_{Ak}]$ gauge condition: $\pi^{kk} = 0$ useful formulae: $D_i D_i N = 2 \partial_i N \partial_i \ln \Psi + \Delta N$, $R \sqrt{\gamma} = -8 \Psi \Delta \Psi$

\downarrow

$$\begin{split} N\Delta\Psi + \Delta \left[\Psi N\right] &= \frac{3}{4} \Psi^{-7} N \pi_j^i \pi_j^i \\ &+ \frac{4\pi G}{c^4} \Psi^{-5} N \sum_{A=1}^N \delta_A \frac{p_{Ai} p_{Ai}}{m_A} \left(1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4}\right)^{1/2} \end{split}$$

Evolution equation for γ_{ij}

$$\frac{1}{c}\partial_t\gamma_{ij} = \frac{N}{\sqrt{\gamma}}(2\pi_{ij} - \pi_k^k\gamma_{ij}) + 2D_{(i}N_{j)}$$
with $2D_{(i}N_{j)} = \gamma_{ki}\partial_j N^k + \gamma_{kj}\partial_i N^k + N^k\partial_k\gamma_{ij}$

Evolution equation for γ_{ij}

$$\frac{1}{c}\partial_t \gamma_{ij} = \frac{N}{\sqrt{\gamma}} (2\pi_{ij} - \pi_k^k \gamma_{ij}) + 2D_{(i}N_{j)}$$

with $2D_{(i}N_{j)} = \gamma_{ki}\partial_j N^k + \gamma_{kj}\partial_i N^k + N^k \partial_k \gamma_{ij}$

Conformal flatness

$$\gamma_{ij} - rac{1}{3} \gamma_{kk} \delta_{ij} = 0 \quad \Longrightarrow \quad \partial_t \left(\gamma_{ij} - rac{1}{3} \gamma_{kk} \delta_{ij}
ight) = 0$$

Evolution equation for γ_{ij}

$$\frac{1}{c}\partial_t \gamma_{ij} = \frac{N}{\sqrt{\gamma}} (2\pi_{ij} - \pi_k^k \gamma_{ij}) + 2D_{(i}N_{j)}$$

with $2D_{(i}N_{j)} = \gamma_{ki}\partial_j N^k + \gamma_{kj}\partial_i N^k + N^k \partial_k \gamma_{ij}$

Conformal flatness

$$egin{aligned} &\gamma_{ij} - rac{1}{3} \gamma_{kk} \delta_{ij} = 0 & \Longrightarrow & \partial_t \left(\gamma_{ij} - rac{1}{3} \gamma_{kk} \delta_{ij}
ight) = 0 \ & \Downarrow \ & \text{STF}(\partial_i N^j) = - \Psi^{-6} N \pi^i_j \end{aligned}$$

Evolution equation for γ_{ij}

$$\frac{1}{c}\partial_t\gamma_{ij} = \frac{N}{\sqrt{\gamma}}(2\pi_{ij} - \pi_k^k\gamma_{ij}) + 2D_{(i}N_{j)}$$

with $2D_{(i}N_{j)} = \gamma_{ki}\partial_j N^k + \gamma_{kj}\partial_i N^k + N^k\partial_k\gamma_{ij}$

Conformal flatness

Auxiliary quantities natural to pose: $N=\chi/\Psi$ with $\lim_{|{f x}| o +\infty}N=1$

Auxiliary quantities natural to pose: $N=\chi/\Psi$ with $\lim_{|{f x}| o +\infty}N=1$

∇ Skeleton Hamiltonian dynamics – p.20/29

Auxiliary quantities natural to pose: $N=\chi/\Psi$ with $\lim_{|{
m x}| o +\infty}N=1$

Elimination of the flesh term

$$\begin{split} \Psi^{-1} \chi \Delta \Psi + \Delta \chi &= \frac{3}{4} \Psi^{-8} \chi \pi_j^i \pi_i^j \\ &+ \frac{4\pi G}{c^4} \Psi^{-6} \chi \sum_{A=1}^N \delta_A \frac{p_{Ai} p_{Ai}}{m_A} \left(1 + \frac{p_{Ai} p_{Ai}}{m_A^2 c^2 \Psi^4} \right)^{1/2} \end{split}$$

Auxiliary quantities natural to pose: $N=\chi/\Psi$ with $\lim_{|\mathbf{x}| o +\infty}N=1$

Elimination of the flesh term $\Psi^{-1}\chi\Delta\Psi + \Delta\chi = \frac{3}{4}\Psi^{-8}\chi\pi_{j}^{i}\pi_{i}^{j}$ $+\frac{4\pi G}{c^{4}}\Psi^{-6}\chi\sum_{A=1}^{N}\delta_{A}\frac{p_{Ai}p_{Ai}}{m_{A}}\left(1 + \frac{p_{Ai}p_{Ai}}{m_{A}^{2}c^{2}\Psi^{4}}\right)^{1/2}$

Skeleton Hamiltonian for 2 black holes

equations satisfied by $\Psi_1 \equiv \Psi_{x=x_1}$ and Ψ_2 deduced from the linear independence of the δ_A 's

$$\begin{split} \Psi_1 &= 1 + \frac{Gm_2}{2r_{12}c^2\Psi_2} \left(1 + \frac{p_2^2}{m_2^2c^2\Psi_2^4}\right)^{\frac{1}{2}} + \frac{Gp_{2i}V_{2i}}{2r_{12}c^3\Psi_2^7} \\ \Psi_2 &= 1 + \frac{Gm_1}{2r_{12}c^2\Psi_1} \left(1 + \frac{p_1^2}{m_1^2c^2\Psi_1^4}\right)^{\frac{1}{2}} + \frac{Gp_{1i}V_{1i}}{2r_{12}c^3\Psi_1^7} \\ \text{where} \quad \Psi_1 &= 1 + \frac{G\alpha_2}{2r_{12}c^2} \quad \text{and} \quad r_{12} = |\mathbf{x}_1 - \mathbf{x}_2| \\ H &= -\frac{c^4}{2\pi G} \int d^3\mathbf{x} \ \Delta \Psi = c^2(\alpha_1 + \alpha_2) \end{split}$$

3-metric

$$\gamma_{ij} = \Psi^4 \delta_{ij}$$
 with $\Psi = 1 + rac{G}{2c^2} \left(rac{lpha_1}{r_1} + rac{lpha_2}{r_2}
ight)$

3-metric

$$\gamma_{ij} = \Psi^4 \delta_{ij}$$
 with $\Psi = 1 + rac{G}{2c^2} \left(rac{lpha_1}{r_1} + rac{lpha_2}{r_2}
ight)$

Lapse function

obtained by projection of the lapse equation on δ_A

$$\begin{split} \chi_B &= 1 - \frac{Gm_A}{r_{12}c^2} \Psi_A^{-4} \chi_A \left\{ \frac{7p_{Ai}(V_{ix=x_A})}{m_A c} \right. \\ & \left. + \left[1 + \frac{p_{Ai}p_{Ai}}{m_A^2 c^2 \Psi_A^4} \right]^{-1/2} \left[3\Psi_A^2 \frac{p_{Ai}p_{Ai}}{m_A^2 c^2} + \Psi_A^6 \right] \right\} \\ & \text{where} \quad \chi_1 = 1 - \frac{G\beta_2}{2r_{12}c^2} \\ \Rightarrow \text{ lapse given by } N &= \frac{\chi}{\Psi} \quad \text{with} \quad \chi = 1 + \frac{G}{2c^2} \left(\frac{\beta_1}{r_1} + \frac{\beta_2}{r_2} \right) \end{split}$$

Shift function

Shift function

• 2^{nd} skeleton approximation: 2PN flesh term neglected in N^i

$$\partial_j \left(\Psi^{-6} N \pi^i_{\ j}
ight) o \Psi^{-6} N \partial_j \pi^i_{\ j} = - rac{8 \pi G}{c^3} \Psi^{-6} N \sum_{A=1}^N p_{Ai} \delta_A$$

Shift function

• 2^{nd} skeleton approximation: 2PN flesh term neglected in N^i

$$\partial_j \left(\Psi^{-6} N \pi^i_{\ j} \right) \to \Psi^{-6} N \partial_j \pi^i_{\ j} = -\frac{8\pi G}{c^3} \Psi^{-6} N \sum_{A=1}^N p_{Ai} \delta_A$$

 ${lacksim}$ integration of the shift equation \sim integration of ${\cal J}_i$

$$N^{i} = \frac{G}{c^{3}} \sum_{A=1}^{N} \chi_{A} \Psi_{A}^{-7} \left(\frac{1}{2} p_{Aj} \partial_{ij} r_{A} - 4 p_{Ai} \frac{1}{r_{A}}\right)$$

Shift function

• 2^{nd} skeleton approximation: 2PN flesh term neglected in N^i

$$\partial_j \left(\Psi^{-6} N \pi^i_{\ j} \right) \to \Psi^{-6} N \partial_j \pi^i_{\ j} = -\frac{8\pi G}{c^3} \Psi^{-6} N \sum_{A=1}^N p_{Ai} \delta_A$$

 ${f o}$ integration of the shift equation \sim integration of ${\cal J}_i$

$$N^{i} = \frac{G}{c^{3}} \sum_{A=1}^{N} \chi_{A} \Psi_{A}^{-7} \left(\frac{1}{2} p_{Aj} \partial_{ij} r_{A} - 4 p_{Ai} \frac{1}{r_{A}}\right)$$

Komar mass M:

$$N = 1 - rac{GM}{c^2 |\mathrm{x}|} + \mathcal{O}\left(rac{1}{|\mathrm{x}|}
ight) \quad \Rightarrow \quad M = rac{1}{2}\sum_{A=1}^2 (lpha_A + eta_A)$$

Equations of motion

Obtained by means of an implicit differentiation

$$\begin{split} \dot{x}_{1}^{i} &= \frac{c^{2}}{(1-\zeta_{1}\zeta_{2})} [(1-\zeta_{2})\theta_{11}^{i} + (1-\zeta_{1})\theta_{21}^{i}] \\ \dot{p}_{1i} &= -\frac{c^{2}}{(1-\zeta_{1}\zeta_{2})} [(1-\zeta_{2})\eta_{1}^{i} - (1-\zeta_{1})\eta_{2}^{i}] - \frac{2c^{4}}{G} (\Psi_{1} + \Psi_{2} - 2)n_{12}^{i} \\ \text{with} \quad \tilde{\eta}_{A1}^{i} &\equiv -\frac{Gm_{A}n_{12}^{i}}{2c^{2}r_{12}^{2}\Psi_{A}} \left(1 + \frac{p_{A}^{2}}{m_{A}^{2}c^{2}\Psi_{A}^{4}}\right)^{\frac{1}{2}} + \frac{G\partial_{1i}(p_{Aj}V_{Aj}/r_{12})}{2c^{3}\Psi_{A}^{7}} \\ \tilde{\eta}_{A2}^{i} &\equiv -\tilde{\eta}_{A1}^{i} \\ \zeta_{A} &\equiv \frac{\chi_{B} - 1}{\chi_{A}} \\ \tilde{\theta}_{A1}^{i} &\equiv \frac{Gp_{1i}}{2m_{A}c^{4}r_{12}\Psi_{A}^{5}} \left(1 + \frac{p_{A}^{2}}{m_{A}^{2}c^{2}\Psi_{A}^{4}}\right)^{-\frac{1}{2}} + \frac{G\partial_{p_{1i}}(p_{Aj}V_{Aj})}{2c^{3}r_{12}\Psi_{A}^{7}} \end{split}$$

CIRCULAR MOTION

PN calculation of $\hat{H} = \{H - (m_1 + m_2)c^2\}/\mu$, [μ = reduced mass]

$$\hat{H} = \sum_{A=1}^{2} \sum_{i=1}^{n+1} rac{lpha_{A}^{(i)}}{\mu} arepsilon^{i} + \mathcal{O}\left(arepsilon^{n+2}
ight)$$

PN calculation of $\hat{H} = \{H - (m_1 + m_2)c^2\}/\mu$, [μ = reduced mass]

$$\hat{H} = \sum_{A=1}^{2} \sum_{i=1}^{n+1} rac{lpha_{A}^{(i)}}{\mu} \varepsilon^{i} + \mathcal{O}\left(\varepsilon^{n+2}
ight)$$

Center of mass: $p_1 + p_2 = 0$

PN calculation of $\hat{H} = \{H - (m_1 + m_2)c^2\}/\mu$, [μ = reduced mass]

$$\hat{H} = \sum_{A=1}^{2} \sum_{i=1}^{n+1} rac{lpha_{A}^{(i)}}{\mu} \varepsilon^{i} + \mathcal{O}\left(\varepsilon^{n+2}
ight)$$

Center of mass: $p_1 + p_2 = 0$ Circularity:

•
$$n_{12}^i p_{1i} = n_{12}^i p_{2i} = 0,$$

• $p_{1i} p_{1i} = \frac{G(m_1 + m_2)}{r_{12}^2} \mu^2 j^2$
• $\frac{\partial \hat{H}(r_{12}, j)}{\partial r_{12}} = 0$

PN calculation of $\hat{H} = \{H - (m_1 + m_2)c^2\}/\mu$, [μ = reduced mass]

$$\hat{H} = \sum_{A=1}^{2} \sum_{i=1}^{n+1} rac{lpha_{A}^{(i)}}{\mu} \varepsilon^{i} + \mathcal{O}\left(arepsilon^{n+2}
ight)$$

Center of mass: $p_1 + p_2 = 0$ Circularity:

•
$$n_{12}^{i} p_{1i} = n_{12}^{i} p_{2i} = 0,$$

• $p_{1i} p_{1i} = \frac{G(m_1 + m_2)}{r_{12}^2} \mu^2 j^2$
• $\frac{\partial \hat{H}(r_{12}, j)}{\partial r_{12}} = 0$

theorem: ADM mass = Komar mass

Equality of Komar and ADM mass (I)

• dependence of α_A for circular motion

$$\alpha_A = \alpha_A(\Psi_A(r,j),r,j)$$

Equality of Komar and ADM mass (I)

• dependence of α_A for circular motion

 $\alpha_A = \alpha_A(\Psi_A(r,j),r,j)$

• relation between α_A and β_A

$$rac{\partial lpha_A}{\partial \Psi_A} = -rac{eta_A}{\chi_A} \qquad rac{\partial lpha_A}{\partial r_{12}} = rac{1}{2r_{12}}\left(lpha_A - eta_A rac{\Psi_A}{\chi_A}
ight)$$

 \leftrightarrow can be checked explicitly

Equality of Komar and ADM mass (I)

• dependence of α_A for circular motion

 $\alpha_A = \alpha_A(\Psi_A(r,j),r,j)$

• relation between α_A and β_A

$$rac{\partial lpha_A}{\partial \Psi_A} = -rac{eta_A}{\chi_A} \qquad rac{\partial lpha_A}{\partial r_{12}} = rac{1}{2r_{12}}\left(lpha_A - eta_A rac{\Psi_A}{\chi_A}
ight)$$

 \leftrightarrow can be checked explicitly

• implication of circularity

Skeleton Hamiltonian dynamics - p.27/29

Equality of Komar and ADM mass (II)

• expression of $\partial \Psi_A/\partial r_{12}$

$$egin{aligned} \Psi_A(r,j) &= 1 + rac{Glpha_B}{2r_{12}c^2} \ \Rightarrow rac{\partial \Psi_A}{\partial r_{12}} &= -rac{G}{4r_{12}c^2} \left(lpha_A + eta_A rac{\Psi_B}{\chi_B}
ight) + rac{eta_B}{\chi_B} rac{\partial \Psi_B}{\partial r_{12}} \end{aligned}$$

 \hookleftarrow 2 equations for 2 unknowns

solution
$$rac{\partial \Psi_A}{\partial r_{12}} = -rac{G}{4r_{12}c^2}(lpha_B+eta_B), \, B
eq A$$

• insertion in the circularity condition $\partial H(r_{12},j)/\partial r_{12}=0$

result
$$\sum_{A=1}^{2} (lpha_{A} - eta_{A}) = 0 \iff M_{\mathsf{ADM}} = M_{\mathsf{Komar}}$$

Application: last stable circular orbit

