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Why Dirac deltas?

e Effacement principle (Damour, 1983): dimensions
and internal structure of the compact nonrotating
bodies enter their equations of motion (EOM) only at
the 5PN order.

e EOM up to 2.5PN order were derived both for
point particles and extended body models—the results
are compatible.

e Point particles together with dimensional
regularization give unique EOM up to 3PN order;
these equations respect global Poincaré invariance.

e Buchdahl’s limit: no contiunous transition exists
from extended bodies to black holes; it seems
reasonable to use ds in studying PN dynamics of
binary black holes.



1 ADM formalism for N point-mass systems
INn d space dimensions

1.1 Reduced Hamiltonian

Asymptotically flat spacetime,
asymptotically Minkowskian reference frame.

Particle labels: a,b,...=1,..., .
g ‘=X —Xgq, Tq.=|rgq|l, Ng:=r4/rq
For a7 bl ryi=3Xa—Xp, Taqp = |Tepl;, MNgp = Tap/Tap-

Matter variables

Xa — (xéaxgaxg)a
a=1,...,N. (1)
Pa = (pa17pa27pa3)7

Field variables
4
n = fg(K" — g g" Ky),
K;; is the extrinsic curvature of the hypersurface
10 = const.

(2)



The ADM constraint equations for N-point-mass
system (in units ¢ = 16wGg41 = 1):

VIR == (g gjem o — = (g7)?) = b, (32)

V9 d—
2 (w’iﬂ',j + rgkwjk) = Rt (3b)
N f P 2
h= > \/9&7 PaiPaj + mg 0(X — Xa) , (4a)
a=1
. N . .
h* =) |98 |Paj o (x — Xa) , (4b)
a=1

g% = ¢ii(x,) is perturbatively unambigously defined
and finite (at least up to the 3PN order).

Eas. (4) are derived
from the energy momentum tensor
u®uP

af — Ma d(xt — zH (1)) drg.
T z / Narecrmi (7a)) dra. (5)




The ADM transverse-traceless (TT) gauge:

J_o \4/(d-2) -
9ij = (1 + 2(d 1)¢> 05+ hyj (6a)
™ = 0. (6b)

,nij — %ij + 7T?JJ'T"I" (78)
7 = VI + 9,V — 35@7’ A V*. (7b)

If the constraint equations and the gauge conditions
are satisfied, the Hamiltonian can be put into its
reduced form:

Hxa,pa, by 7T 7] = = [ dle Ag[xa, pa by T, 77T T,
(8)
The equations of motion for the particles:
OH OH
pa:— 3 Xa: s a/:].,...,N. (9)
0Xg OPa

Evolution equations for the field degrees of freedom:
0 _yTT _ _ oH O,7T _ OoH
ot 5hTT’ ot W gpklTTS

(10)




1.2 Post-Newtonian expansion of the reduced
two-point-mass Hamiltonian

N =2

Zeroth order approximation: Newtonian gravity.
nPN order: corrections of order

()"~ (a)

to the Newtonian gravity.

Expansion of the functions in 1/¢ (the numbers within

parentheses denote the order in 1/c¢):

¢:¢(2)—|—¢(4)—|—... , (11a)
Vi:V(i3)+V(’i5)—|—... , (11b)
hij' = h(ayij +hisy; + - (11c)
i TT ng + W%gT + ... (11d)

leads to the PN expansion of the Hamiltonian:

1 1
H =(my +m) c® + Hy + S Hipn + 7 Hopn
1 1 1
+ s Hospn T gH3pn T 7H3 5PN
C C C

+0 (C%) | (12)



3PN-accurate conservative two-point-mass matter
Hamiltonian:

H(Xq,Pa) =(m1 + m2)02 + Hn(Xa, Pa)

1 1
+ 2 Hipn(Xa;Pa) + 4 Hopn(Xa; Pa)

1
+ _6H3PN(XCL7PCL) . (13)
C

Equations of motion of the particles:
. OH . OH

— = , 14
(9pa, ’ Pa 8Xa ( )

Xa



The 3PN-accurate Hamiltonian can be expressed
in terms of the six functions:

Sy P(ayr Viay Tia)ii Seayr and Siayi;.

They satisfy the equations <5a =d(x — xa)>:

A (15(2) — = Zma da (15a)
d— 2
ANIINES Ea: 4(d 1)¢(2) Y mada, (15b)
i 2 i o1
AV(3) + (1 d> 823‘/(3) — 5 za:pai Oa » (15c¢)

TT PaiPa; d—2 o
_ at’aj
Ah(gyij = (‘%3 %= Sg - 1)P@ii ¢(2>,g> >

Mmaq
(15d)
AS —Zp—gd (15¢)
(4) =2 “a;
a a
AS(gyy; = 3 P00, (15f)



One uses the relations:
d— 2
A5y = —kr2d = r( )/(47r2), (16a)
)\-|—2

—1)\
AT = N F )0 F D (16b)

E.g., ¢(2) — — Zma A_15a, — kZma’l“g_d
a a

3(2), b4y V(3y: S4)» Sayij» and the quadratic in
momenta part of h(ngz'j can be found.



2 Regularization of the 3PN two-point-mass
Hamiltonian in d = 3 space dimensions

2.1 Regularization prescriptions
and ambiguity of the regularization results

H(xa,Pa) = | 43 H(x; Xa, Pa), (17a)

H(X; Xq, Pa) = gD) (X; Xa, Pa) + /HEBD) (X; Xa, Pa)

+ ;D' (X; Xa, Pa), (17b)

9;D* gives no contribution to the H.

Structure of contact H(D) and field-like ?{;D) terms:

(D) _ 3 Sa(x; %3, pp) 3~ xa), (182)
g‘fD) =Y cg(n1-p1)" (n2-p1)2 (n1 - p2)*3 (n2 - p2)*
¢

X "“1 "“2 (r1 4o + r12)"7. (18b)



Contact terms: Hadamard’'s “partie finie”

[ 63 Sa(xi %, Pp) 6(x — Xa) = Jim Sa(x; X, Py)

= Pfa Sa(X; X3, Pp); (193)

oo
Sa(Xa _I_ TaNga, Xb, pb) — Z am(na) TZIn 3 (19b)
m=—M
1

Important property: in general,

Pfa(f1f2--+) # (Pfa f1)(Pfaf2) . (19d)



Field-like terms: Riesz’'s analytic continuation

et us consider singular integral

I = /d3a: F(x: X1, %5). (20)
R3

RI=ViUVUV (x1€Vy, x26E Vo, V1NV =0)

I1(e1) = /d3fb” (T—1> F(x;x1,X%2), (21)
1

lh

where [7 is a regularization length scale.

Some integrals gives rise to a pole, as €1 — O:

1 R
ne =2 (2+n(B))+a+oe, @2
1 1
where R4 is a length scale

associated with the choice of Vj.

In computation of the 3PN ADM Hamiltonian
all pole terms exactly cancel:

Yy Zi=o. (23)




Generalized Riesz formula

/d% T Tg(rl +ro+ri2)’ =27 T(fé;_ﬁ+7+3

X (B(a-|-2,ﬁ—|—2)B1/2(—a—6—7—4,a—|—6—|—4)
—B(—a—B8—-4,8+2)Byp(—a—v—2,a+2)

~B(—a—B—4,a+2)Byp(—f—v-2,8+2)),

where B is the beta function,
B, /5 is the incomplete beta function:

1 1
By (o, B) = —2F1<1 —Biaia+ 1 5) )

a2%

~F7 is the Gauss hypergeometric function.



H = /d% H, (24a)

H=n") +#HP) + oD (24b)

When operating by parts
(which changes D¢, ((;D), and ’H&D)),
the regularized value

H{ly) = Hitdg + HY) (25)

is found to change.




H(Xq,Pa) =(m1 + mo) 02 + Hn(Xa, Pa)

1 1
+ - Hipn(Xa, Pa) + — Hopn(Xa, Pa)
C C

1

_I_ C_6H3PN(XCL7PCL)7 (26)
2 2 Gmim
HN(Xa, Pa) = 1 + P2 172 , etc. (27)
2m1 2mo 192

H3pN(Xa; Pa) = HII;?DQN (Xa, Pa)

+ ngll:?ﬁltlc(xaa pa) + H%E&IC(Xa, pa),

(28)
kinetic G® my1m2
H3pN (Xa; Pa) = |[wkinetic > 3
12
X [p% ~3(n12-p1)?+ (1 + 2)] ;
(29a)

- G*m2m3 (m1 + m»)
H%EIEIIC(XCL’ Pa) = [Wstatic ! 27“4 . (29b)
12




2.2 Poincaré invariance of the ADM dynamics
and the determination of the Kinetic ambiguity
parameter

Poisson brackets structure on the two-point-mass
phase space:

{A(Xanpa))B(Xa:pa)} Z Z

a=1:=1

0A OB 0A OB
377’ O Pai apaiaxlciz .
(30)

One requires the existence of generators
of the Poincaré algebra
realized as functions PF(xq,pa) and JH(Xq, Pa):

{PH,P"} =0, (31a)
{PH,JP7} =~ P7 + i PP, (31b)

{JHV_ JPOY = phP JVO _ phO JVP _ VP JHO | VO JHp
(31¢)
where n# :=diag (—-1,+1,+1,41).



The generators P* and J*¥ are decomposed as:

PP = H(xq,ps) (including the rest-mass contribution),

(32a)
P’ = three-momentum, (32b)
Jt = %Ejikgjkg (angular momentum), (32¢)
K'=J9 (boost vector). (32d)

One further decomposes the boost vector K:

Ki(XanPa; t) = Gi(xaa Pa) — tPi(xa,pa), (33)
so that

dK'  OK'

= (K H} =P+ {G, H}=0. (34)



{P7,7H} — {J’L:H} — 07
{Jis Pj} = €41 Pr» {Ji 5} = €iji Jie
{Ji,Gj} = €k G »

{GZ7H} =P’i7

1
{G;, Pj} = C—QH%',

1
{G;,G;} = — 2 %ijk Ik

The generators P; and J; are realized as

P;(Xq,Pa) = Zpai , Ji(Xa,Pa) = Z Eikt xl; Pas -
a a

(35a)
(35b)
(35¢)

(35d)

(35e)

(35f)

(36)

H(xq,pa) is translationally and rotationally invariant:

Eqgs. (35a) and (35b) are exactly satisfied.

Eq. (35¢c) will be exactly satisfied

if G; is constructed as a three-vector from x4, and pg.

There should exist a vector G;(xq, pa) Satisfying

relations (35d), (35e), and (35f).




At the Newtonian level, equations

{Gi7 H} — Pz )
{G;, Pj} = (m1 + m2) 6,
{Gi,G;} =0,

are satisfied by the vector

f\l(xa,pa) = maz}.
a

(37a)
(37b)
(37¢)

(38)



Does there exist a 3PN-accurate vector G*
such that Eqgs. (35d)—(35f) are fulfilled
(within the 3PN accuracy)?

The method of undetermined coefficients

. 2 .
GZ(XCM pa) — Z [Ma(xba pb) 337& + Na(xba pb) pai] ) (393)

a=1
_ 1 apn, 1 0oen 1 3PN
Ma = ma + 5 MIPN + 2 M2PN 4 = (3PN,
C C C
(39b)

1 1

1 1
Na= 5 Ng "+ 2NN+ 5 NPN. (390)
C C C

M?PN and N2?PN are sums of scalar monomials
of the form

Cnoningnzngns 7192

x (p2)™! (p3)™2 (p1 - P2)™3(n15 - p1)™ (n12 - p2)"s,

with positive integers nqg,...,ns.



One takes into account:

e dimensional analysis
(which constrains the possible values of ng, ..., ng);

e Euclidean covariance (including parity symmetry);

e time reversal symmetry
(Mg is even and Ny odd under pg — —Pa).

The ansatz yields a system of equations
for unknown coefficients cy,.

At the 1PN and 2PN levels
the solutions of these equations is unique.



At the 3PN level:

e the ansatz for M3PNand N3PN involves 78 unknown
coefficients ¢, and yields 138 equations to be satisfied;

e the quantity wgjnetic €nters the system of equations
(wstatic drops out of the problem).

There exists a unique value of wginetic
for which the system of equations is compatible:

41

Wkinetic = 5 - (40)

If wkinetic 7 41/24, the 3PN Hamiltonian does not
admit a global Poincaré invariance.

If wkinetic = 41/24, there is a unique solution.



2.3 Equivalence between the ADM-Hamiltonian

and the harmonic-coordinates approaches

The ADM-Hamiltonian approach

ADM variables: x4, pPa.

Equations of motion:
__OH . OH
~ 9pa’ Pa = OxXq

Xa

The harmonic-coordinates approach

(Blanchet, Faye, de Andrade)
Harmonic variables: y,, vg = ya.

Equations of motion:

ya — Aa(Yanb; y{l_7y,27 )‘) )

(41)

(42)

y} and y, are some regularization length scales

(can be gauged away);

A IS the dimensionless regularization parameter.



The necessary and sufficient condition
for the transformation

ya(®) = Ya(xp(2), pp(t)), (43a)
va(t) = Va(xp(t), pp(t)) , (43b)

to map the ADM dynamics onto the harmonic one is:
{Ya, H} — Va7 {V(Ia H} — Aa7 (44)

U
{{Ya, H}, H} = Ao (Y, {Ye, H}). (45)

Eqgs. (45) are equations for the two unknown
functions Y1 (xp, pp) and Yo(xp, Pp)-

The method of undetermined coefficients

The ansatz for Y1 and Y5 gives a linear system of 512
equations for the 2 x 52 = 104 unknown coefficients.

This system is compatible if and only if
the ambiguity parameters wstatic and A are related by
3 1987

A= ——— o T
11 Wstatic 3080

(46)

Then the solution is unique.



3 Dimensional regularization
of the 3PN two-point-mass Hamiltonian

3.1 Finiteness of the Hamiltonian as d — 3

H3pn(d=3) = Gll'_rg H3pn(d), (47)

if no poles proportional to 1/(d — 3) arise when d — 3.

There exists ten terms Ty, A=1, ..., 10,
giving rise to poles as d — 3.

Near r1 = O they have all the structure:

Ty = k4 mi1mo 'r?_?’d

X (CAl D(p1,pP1) +cao(ny -p1) D(ny,p1)

+ |caz (n1-p1)? + cas (p1)?| D(ny, n1)> )
(48)
where c41, ..., cqq are some d-dependent coefficients,
— (q..,.2—d i g
D(p7q) T <823r2 )szl p q,

k. =T (%) /(471'%).



The "“pole” contribution of the term Ty
to the Hamiltonian Hzppn(d):

ch sing 1097y - — / d% T4

1 —2(d-3) ca(d)

_ 4
=5 Qik"m1mo D(p1,P1) 44 T3 (49)

where €2, is the area of the unit sphere
in d dimensions.

One expands the coefficients c4(d) in powers of
e=d— 3:

ca(d) = ca(3) +edy(3) + O(?). (50)



CA

21 1013

512 T 10240 °¢

7 1649

4 601

_|_

2560 ' 153600 -

1 53
+

€
256 5120

1 33

€
32 640

49 5467
+

1280 ' 76800 °

1 15
6T 6a¢

21 5423

2560 153600 -

21 2903
+

2560 | 153600 -

128 7680 -

The total pole part of Hypn(d) vanishes as d — 3:

10

A=

E: cq(3)=0.

1

(51)



3.2 Removing ambiguities

of the 3-dimensional regularization results

Let HapN 3D reg P€ the 3PN Hamiltonian obtained
by Riesz-implemented Hadamard regularization

performed in d = 3 space dimensions.

The correct 3PN Hamiltonian can be computed as

Iim Hzpn(d) = H3pN 3D reg + AHzpN;

where

AHgzpn = lim Hzpn(d) — H3pN 3D reg

. loc loc
= |lim H d) — H
m 3pn(d) 3PN 3D reg

T loc sing loC sing
—C'i'_rf‘?, H3pn 7 (d) — H3pn 3D reg

T loc sing log loc sing log
= Ilim H d) — H
d—3 3PN ()

3PN 3D reg-

(52)

(53a)

(53b)

(53¢)

(53d)



loc sing log __
H3pN 3D reg = 0 (54a)
AHzpyn = C!ll_rg H:I%oPching Iog(d)

10

BT loc sing log
= |Iim H d 1+ 2
Sm 3 Ha (@) + (1 ¢ 2)

G3
=32 52 ( p? - 3(m12-p1)? + (1 & 2))
12

10
x 3 d4(3). (54b)
A=1

From Eqg. (54b) one determines the values
of both ambiguity parameters:

dim reg __ 41
Wkinetic — 24" (55a)

wim.re9 =o. (55b)




Conformally flat truncations of general relativity

hi; ' =0

Y

e Violation of global Poincaré invariance
(starting at 2PN order).

e No cancellation of poles leading to
a formally infinite 3PN Hamiltonian.



