DIMENSIONAL REGULARIZATION OF THE GRAVITATIONAL INTERACTION OF POINT MASSES

Warszawa, 5.IX.2003

Thibault Damour
Institut des Hautes Études Scientifiques
Bures-sur-Yvette, France

Piotr Jaranowski
Institute of Theoretical Physics
University of Białystok
Białystok, Poland

Gerhard Schäfer
Theoretisch-Physikalisches Institut
Friedrich-Schiller-Universität
Jena, Germany

1 ADM formalism for N point-mass systems in d space dimensions

- 1.1 Reduced Hamiltonian
- 1.2 Post-Newtonian expansion of the reduced two-point-mass Hamiltonian

2 Regularization of the 3PN two-point-mass Hamiltonian in d=3 space dimensions

- 2.1 Regularization prescriptions and ambiguity of the regularization results
- 2.2 Poincare invariance of the ADM dynamics and the determination of the kinetic ambiguity parameter
- 2.3 Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches

3 Dimensional regularization of the 3PN two-point-mass Hamiltonian

- 3.1 Finiteness of the Hamiltonian as d o 3
- 3.2 Removing ambiguities of the 3-dimensional regularization results

Why Dirac deltas?

- Effacement principle (Damour, 1983): dimensions and internal structure of the compact nonrotating bodies enter their equations of motion (EOM) only at the 5PN order.
- EOM **up to 2.5PN order** were derived both for point particles and extended body models—the results are compatible.
 - Point particles together with dimensional regularization give **unique** EOM up to 3PN order; these equations respect global Poincaré invariance.
 - ullet **Buchdahl's limit**: no contiunous transition exists from extended bodies to black holes; it seems reasonable to use δ s in studying PN dynamics of binary black holes.

1 ADM formalism for N point-mass systems in d space dimensions

1.1 Reduced Hamiltonian

Asymptotically flat spacetime, asymptotically Minkowskian reference frame.

Particle labels: $a, b, \ldots = 1, \ldots, N$.

$$\mathbf{r}_a := \mathbf{x} - \mathbf{x}_a, \quad r_a := |\mathbf{r}_a|, \quad \mathbf{n}_a := \mathbf{r}_a/r_a$$

For $a \neq b$: $\mathbf{r}_{ab} := \mathbf{x}_a - \mathbf{x}_b$, $r_{ab} := |\mathbf{r}_{ab}|$, $\mathbf{n}_{ab} := \mathbf{r}_{ab}/r_{ab}$.

Matter variables

$$\mathbf{x}_{a} = (x_{a}^{1}, x_{a}^{2}, x_{a}^{3}), \mathbf{p}_{a} = (p_{a1}, p_{a2}, p_{a3}),$$

$$a = 1, \dots, N.$$
 (1)

Field variables

$$g_{ij} := {}^{4}g_{ij},$$

 $\pi^{ij} := \sqrt{g}(K^{ij} - g^{ij}g^{kl}K_{kl}),$ (2)

 K_{ij} is the extrinsic curvature of the hypersurface $x^0 = const.$

The ADM constraint equations for N-point-mass system (in units $c = 16\pi G_{d+1} = 1$):

$$\sqrt{g} R - \frac{1}{\sqrt{g}} \left(g_{ik} g_{j\ell} \pi^{ij} \pi^{k\ell} - \frac{1}{d-1} (g_{ij} \pi^{ij})^2 \right) = h, \quad (3a)$$

$$-2\left(\pi^{ij}_{,j} + \Gamma^{i}_{jk}\pi^{jk}\right) = h^{i},\tag{3b}$$

$$h = \sum_{a=1}^{N} \sqrt{g_a^{ij}} p_{ai} p_{aj} + m_a^2 \delta(\mathbf{x} - \mathbf{x}_a), \qquad (4a)$$

$$h^{i} = \sum_{a=1}^{N} \left[g_{a}^{ij} \right] p_{aj} \, \delta(\mathbf{x} - \mathbf{x}_{a}) \,, \tag{4b}$$

 $g_a^{ij} \equiv g^{ij}(\mathbf{x}_a)$ is perturbatively unambigously defined and finite (at least up to the 3PN order).

Eqs. (4) are derived from the energy momentum tensor

$$T^{\alpha\beta} = \sum_{a=1}^{N} m_a \int_{-\infty}^{+\infty} \frac{u^{\alpha} u^{\beta}}{\sqrt{-\det(^{4}g_{\mu\nu})}} \delta(x^{\mu} - z^{\mu}(\tau_a)) d\tau_a.$$
 (5)

The ADM transverse-traceless (TT) gauge:

$$g_{ij} = \left(1 + \frac{d-2}{4(d-1)}\phi\right)^{4/(d-2)} \delta_{ij} + h_{ij}^{\mathsf{TT}},\tag{6a}$$

$$\pi^{ii} = 0. ag{6b}$$

$$\pi^{ij} = \tilde{\pi}^{ij} + \pi^{ij} + \pi^{ij}, \tag{7a}$$

$$\tilde{\pi}^{ij} = \partial_i V^j + \partial_j V^i - \frac{2}{d} \delta^{ij} \partial_k V^k.$$
 (7b)

If the constraint equations and the gauge conditions are satisfied, the Hamiltonian can be put into its reduced form:

$$H\left[\mathbf{x}_{a}, \mathbf{p}_{a}, h_{ij}^{\mathsf{TT}}, \pi^{ij\mathsf{TT}}\right] = -\int d^{d}x \, \Delta\phi\left[\mathbf{x}_{a}, \mathbf{p}_{a}, h_{ij}^{\mathsf{TT}}, \pi^{ij\mathsf{TT}}\right].$$
(8)

The equations of motion for the particles:

$$\dot{\mathbf{p}}_a = -\frac{\partial H}{\partial \mathbf{x}_a}, \quad \dot{\mathbf{x}}_a = \frac{\partial H}{\partial \mathbf{p}_a}, \quad a = 1, \dots, N.$$
 (9)

Evolution equations for the field degrees of freedom:

$$\frac{\partial}{\partial t} \pi^{ij\top\top} = -\frac{\delta H}{\delta h_{kl}^{\top\top}}, \qquad \frac{\partial}{\partial t} h_{ij}^{\top\top} = \frac{\delta H}{\delta \pi^{kl\top\top}}. \tag{10}$$

1.2 Post-Newtonian expansion of the reduced two-point-mass Hamiltonian

$$N = 2$$

Zeroth order approximation: Newtonian gravity. nPN order: corrections of order

$$\left(\frac{v}{c}\right)^{2n} \sim \left(\frac{Gm}{r\,c^2}\right)^n$$

to the Newtonian gravity.

Expansion of the functions in 1/c (the numbers within parentheses denote the order in 1/c):

$$\phi = \phi_{(2)} + \phi_{(4)} + \dots, \tag{11a}$$

$$V^i = V^i_{(3)} + V^i_{(5)} + \dots,$$
 (11b)

$$h_{ij}^{\mathsf{TT}} = h_{(4)ij}^{\mathsf{TT}} + h_{(5)ij}^{\mathsf{TT}} + \dots,$$
 (11c)

$$\pi^{ij\top\top} = \pi^{ij\top\top}_{(5)} + \pi^{ij\top\top}_{(6)} + \dots,$$
 (11d)

leads to the PN expansion of the Hamiltonian:

$$H = (m_1 + m_2) c^2 + H_N + \frac{1}{c^2} H_{1PN} + \frac{1}{c^4} H_{2PN}$$

$$+ \frac{1}{c^5} H_{2.5PN} + \frac{1}{c^6} H_{3PN} + \frac{1}{c^7} H_{3.5PN}$$

$$+ \mathcal{O}\left(\frac{1}{c^8}\right). \tag{12}$$

3PN-accurate *conservative* two-point-mass *matter* Hamiltonian:

$$H(\mathbf{x}_{a}, \mathbf{p}_{a}) = (m_{1} + m_{2})c^{2} + H_{N}(\mathbf{x}_{a}, \mathbf{p}_{a})$$

$$+ \frac{1}{c^{2}} H_{1PN}(\mathbf{x}_{a}, \mathbf{p}_{a}) + \frac{1}{c^{4}} H_{2PN}(\mathbf{x}_{a}, \mathbf{p}_{a})$$

$$+ \frac{1}{c^{6}} H_{3PN}(\mathbf{x}_{a}, \mathbf{p}_{a}).$$
(13)

Equations of motion of the particles:

$$\dot{\mathbf{x}}_a = \frac{\partial H}{\partial \mathbf{p}_a}, \quad \dot{\mathbf{p}}_a = -\frac{\partial H}{\partial \mathbf{x}_a}.$$
 (14)

The 3PN-accurate Hamiltonian can be expressed in terms of the six functions:

$$\phi_{(2)}$$
, $\phi_{(4)}$, $V^i_{(3)}$, $h^{TT}_{(4)ij}$, $S_{(4)}$, and $S_{(4)ij}$.

They satisfy the equations $(\delta_a \equiv \delta(\mathbf{x} - \mathbf{x}_a))$:

$$\Delta \phi_{(2)} = -\sum_{a} m_a \, \delta_a \,, \tag{15a}$$

$$\Delta \phi_{(4)} = -\frac{1}{2} \sum_{a} \frac{\mathbf{p}_a^2}{m_a} \delta_a + \frac{d-2}{4(d-1)} \phi_{(2)} \sum_{a} m_a \delta_a , \quad (15b)$$

$$\Delta V_{(3)}^{i} + \left(1 - \frac{2}{d}\right) \partial_{ij} V_{(3)}^{j} = -\frac{1}{2} \sum_{a} p_{ai} \delta_{a},$$
 (15c)

$$\Delta h_{(4)ij}^{\mathsf{TT}} = \left(-\sum_{a} \frac{p_{ai} p_{aj}}{m_a} \delta_a - \frac{d-2}{2(d-1)} \phi_{(2),i} \phi_{(2),j} \right)^{\mathsf{TT}}, \tag{15d}$$

$$\Delta S_{(4)} = \sum_{a} \frac{\mathbf{p}_a^2}{m_a} \delta_a \,, \tag{15e}$$

$$\Delta S_{(4)ij} = \sum_{a} \frac{p_{ai}p_{aj}}{m_a} \delta_a. \tag{15f}$$

One uses the relations:

$$\Delta^{-1}\delta_a = -k \, r_a^{2-d}, \quad k := \Gamma\left(\frac{d-2}{2}\right)/(4\pi^{\frac{d}{2}}), \quad (16a)$$

$$\Delta^{-1}r_a^{\lambda} = \frac{r_a^{\lambda+2}}{(\lambda+2)(\lambda+d)}.$$
 (16b)

E.g.,
$$\phi_{(2)} = -\sum_a m_a \Delta^{-1} \delta_a = k \sum_a m_a r_a^{2-d}$$
.

 $\phi_{(2)}, \; \phi_{(4)}, \; V^i_{(3)}, \; S_{(4)}, \; S_{(4)ij}, \; \text{and the quadratic in}$ momenta part of $h^{\text{TT}}_{(4)ij}$ can be found.

2 Regularization of the 3PN two-point-mass Hamiltonian in d=3 space dimensions

2.1 Regularization prescriptions and ambiguity of the regularization results

$$H(\mathbf{x}_a, \mathbf{p}_a) = \int d^3x \, \mathcal{H}(\mathbf{x}; \mathbf{x}_a, \mathbf{p}_a), \qquad (17a)$$

$$\mathcal{H}(\mathbf{x}; \mathbf{x}_a, \mathbf{p}_a) = \mathcal{H}_c^{(D)}(\mathbf{x}; \mathbf{x}_a, \mathbf{p}_a) + \mathcal{H}_f^{(D)}(\mathbf{x}; \mathbf{x}_a, \mathbf{p}_a) + \partial_i D^i(\mathbf{x}; \mathbf{x}_a, \mathbf{p}_a),$$
(17b)

 $\partial_i D^i$ gives no contribution to the H.

Structure of contact $\mathcal{H}_c^{(D)}$ and field-like $\mathcal{H}_f^{(D)}$ terms:

$$\mathcal{H}_c^{(D)} = \sum_a S_a(\mathbf{x}; \mathbf{x}_b, \mathbf{p}_b) \, \delta(\mathbf{x} - \mathbf{x}_a), \tag{18a}$$

$$\mathcal{H}_{f}^{(D)} = \sum_{\ell} c_{\ell} (\mathbf{n}_{1} \cdot \mathbf{p}_{1})^{\ell_{1}} (\mathbf{n}_{2} \cdot \mathbf{p}_{1})^{\ell_{2}} (\mathbf{n}_{1} \cdot \mathbf{p}_{2})^{\ell_{3}} (\mathbf{n}_{2} \cdot \mathbf{p}_{2})^{\ell_{4}}$$

$$\times r_{1}^{\ell_{5}} r_{2}^{\ell_{6}} (r_{1} + r_{2} + r_{12})^{\ell_{7}}.$$
(18b)

Contact terms: Hadamard's "partie finie"

$$\int d^3x \, S_a(\mathbf{x}; \mathbf{x}_b, \mathbf{p}_b) \, \delta(\mathbf{x} - \mathbf{x}_a) \equiv \lim_{\mathbf{x} \to \mathbf{x}_a} S_a(\mathbf{x}; \mathbf{x}_b, \mathbf{p}_b)$$

$$:= \mathsf{Pf}_a \, S_a(\mathbf{x}; \mathbf{x}_b, \mathbf{p}_b); \quad (19a)$$

$$S_a(\mathbf{x}_a + r_a \mathbf{n}_a; \mathbf{x}_b, \mathbf{p}_b) = \sum_{m=-M}^{\infty} a_m(\mathbf{n}_a) r_a^m, \qquad (19b)$$

$$\mathsf{Pf}_a \, S_a(\mathbf{x}; \mathbf{x}_b, \mathbf{p}_b) := \frac{1}{4\pi} \oint d\Omega_a \, a_0(\mathbf{n}_a). \tag{19c}$$

Important property: in general,

$$\mathsf{Pf}_a(f_1 f_2 \cdots) \neq (\mathsf{Pf}_a f_1)(\mathsf{Pf}_a f_2) \cdots . \tag{19d}$$

Field-like terms: Riesz's analytic continuation

Let us consider singular integral

$$I := \int_{\mathbb{R}^3} d^3x \, F(\mathbf{x}; \mathbf{x}_1, \mathbf{x}_2). \tag{20}$$

$$\mathbb{R}^3 = V_1 \cup V_2 \cup V \quad (\mathbf{x}_1 \in V_1, \, \mathbf{x}_2 \in V_2, \, V_1 \cap V_2 = \emptyset)$$

$$I_1(\varepsilon_1) := \int_{V_1} d^3x \left(\frac{r_1}{l_1}\right)^{\varepsilon_1} F(\mathbf{x}; \mathbf{x}_1, \mathbf{x}_2), \tag{21}$$

where l_1 is a regularization length scale.

Some integrals gives rise to a pole, as $\varepsilon_1 \to 0$:

$$I_1(\varepsilon_1) = Z_1\left(\frac{1}{\varepsilon_1} + \ln\left(\frac{R_1}{l_1}\right)\right) + A_1 + \mathcal{O}(\varepsilon_1), \quad (22)$$

where R_1 is a length scale associated with the choice of V_1 .

In computation of the 3PN ADM Hamiltonian all pole terms exactly cancel:

$$\sum Z_1 = 0. \tag{23}$$

Generalized Riesz formula

$$\int d^3x \, r_1^{\alpha} \, r_2^{\beta} (r_1 + r_2 + r_{12})^{\gamma} = 2\pi \, r_{12}^{\alpha + \beta + \gamma + 3}$$

$$\times \left(B(\alpha + 2, \beta + 2) B_{1/2} (-\alpha - \beta - \gamma - 4, \alpha + \beta + 4) - B(-\alpha - \beta - 4, \beta + 2) B_{1/2} (-\alpha - \gamma - 2, \alpha + 2) - B(-\alpha - \beta - 4, \alpha + 2) B_{1/2} (-\beta - \gamma - 2, \beta + 2) \right),$$

where B is the beta function, $B_{1/2}$ is the incomplete beta function:

$$B_{1/2}(\alpha,\beta) = \frac{1}{\alpha 2^{\alpha}} {}_{2}F_{1}(1-\beta,\alpha;\alpha+1;\frac{1}{2}),$$

 $_2F_1$ is the Gauss hypergeometric function.

$$H = \int d^3x \, \mathcal{H},\tag{24a}$$

$$\mathcal{H} = \mathcal{H}_c^{(D)} + \mathcal{H}_f^{(D)} + \partial_i D^i. \tag{24b}$$

When operating by parts (which changes D^i , $\mathcal{H}_c^{(D)}$, and $\mathcal{H}_f^{(D)}$), the regularized value

$$H_{\text{reg}}^{(D)} = H_{c \text{ reg}}^{(D)} + H_{f \text{ reg}}^{(D)}$$
 (25)

is found to change.

$$H(\mathbf{x}_{a}, \mathbf{p}_{a}) = (m_{1} + m_{2}) c^{2} + H_{N}(\mathbf{x}_{a}, \mathbf{p}_{a})$$

$$+ \frac{1}{c^{2}} H_{1PN}(\mathbf{x}_{a}, \mathbf{p}_{a}) + \frac{1}{c^{4}} H_{2PN}(\mathbf{x}_{a}, \mathbf{p}_{a})$$

$$+ \frac{1}{c^{6}} H_{3PN}(\mathbf{x}_{a}, \mathbf{p}_{a}), \qquad (26)$$

$$H_{N}(\mathbf{x}_{a}, \mathbf{p}_{a}) = \frac{\mathbf{p}_{1}^{2}}{2m_{1}} + \frac{\mathbf{p}_{2}^{2}}{2m_{2}} - \frac{Gm_{1}m_{2}}{r_{12}}, \text{ etc.}$$
 (27)

$$H_{3PN}(\mathbf{x}_a, \mathbf{p}_a) = H_{3PN}^{\text{reg}}(\mathbf{x}_a, \mathbf{p}_a)$$

$$+ H_{3PN}^{\text{kinetic}}(\mathbf{x}_a, \mathbf{p}_a) + H_{3PN}^{\text{static}}(\mathbf{x}_a, \mathbf{p}_a),$$
(28)

$$H_{3\text{PN}}^{\text{kinetic}}(\mathbf{x}_a, \mathbf{p}_a) = \underline{\omega_{\text{kinetic}}} \frac{G^3 m_1 m_2}{2 r_{12}^3} \times \left[\mathbf{p}_1^2 - 3(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 + (1 \leftrightarrow 2) \right], \tag{29a}$$

$$H_{3PN}^{\text{static}}(\mathbf{x}_a, \mathbf{p}_a) = \omega_{\text{static}} \frac{G^4 m_1^2 m_2^2 (m_1 + m_2)}{r_{12}^4}.$$
 (29b)

2.2 Poincaré invariance of the ADM dynamics and the determination of the kinetic ambiguity parameter

Poisson brackets structure on the two-point-mass phase space:

$$\{A(\mathbf{x}_a, \mathbf{p}_a), B(\mathbf{x}_a, \mathbf{p}_a)\} := \sum_{a=1}^{2} \sum_{i=1}^{3} \left(\frac{\partial A}{\partial x_a^i} \frac{\partial B}{\partial p_{ai}} - \frac{\partial A}{\partial p_{ai}} \frac{\partial B}{\partial x_a^i} \right).$$
(30)

One requires the existence of generators of the Poincaré algebra realized as functions $P^{\mu}(\mathbf{x}_a, \mathbf{p}_a)$ and $J^{\mu\nu}(\mathbf{x}_a, \mathbf{p}_a)$:

$$\{P^{\mu}, P^{\nu}\} = 0, \tag{31a}$$

$$\{P^{\mu}, J^{\rho\sigma}\} = -\eta^{\mu\rho} P^{\sigma} + \eta^{\mu\sigma} P^{\rho}, \tag{31b}$$

$$\{J^{\mu\nu}, J^{\rho\sigma}\} = \eta^{\mu\rho} J^{\nu\sigma} - \eta^{\mu\sigma} J^{\nu\rho} - \eta^{\nu\rho} J^{\mu\sigma} + \eta^{\nu\sigma} J^{\mu\rho},$$
(31c)

where $\eta^{\mu\nu} := \text{diag}(-1, +1, +1, +1)$.

The generators P^{μ} and $J^{\mu\nu}$ are decomposed as:

$$P^0 \equiv H(\mathbf{x}_a, \mathbf{p}_a)$$
 (including the rest-mass contribution), (32a)

$$P^i \equiv \text{three-momentum},$$
 (32b)

$$J^i \equiv \frac{1}{2} \varepsilon^{ik\ell} J_{k\ell}$$
 (angular momentum), (32c)

$$K^i \equiv J^{i0}$$
 (boost vector). (32d)

One further decomposes the boost vector \mathbf{K} :

$$K^{i}(\mathbf{x}_{a}, \mathbf{p}_{a}; t) \equiv G^{i}(\mathbf{x}_{a}, \mathbf{p}_{a}) - t P^{i}(\mathbf{x}_{a}, \mathbf{p}_{a}),$$
 (33)
so that

$$\frac{dK^{i}}{dt} = \frac{\partial K^{i}}{\partial t} + \{K^{i}, H\} = -P^{i} + \{G^{i}, H\} = 0.$$
 (34)

$${P_i, H} = {J_i, H} = 0,$$
 (35a)

$$\{J_i, P_j\} = \varepsilon_{ijk} P_k, \ \{J_i, J_j\} = \varepsilon_{ijk} J_k,$$
 (35b)

$$\{J_i, G_j\} = \varepsilon_{ijk} G_k, \qquad (35c)$$

$$\{G_i, H\} = P_i, \tag{35d}$$

$$\{G_i, P_j\} = \frac{1}{c^2} H \,\delta_{ij},$$
 (35e)

$$\{G_i, G_j\} = -\frac{1}{c^2} \varepsilon_{ijk} J_k. \tag{35f}$$

The generators P_i and J_i are realized as

$$P_i(\mathbf{x}_a, \mathbf{p}_a) = \sum_a p_{ai}, \quad J_i(\mathbf{x}_a, \mathbf{p}_a) = \sum_a \varepsilon_{ik\ell} x_a^k p_{a\ell}.$$
 (36)

 $H(\mathbf{x}_a, \mathbf{p}_a)$ is translationally and rotationally invariant: Eqs. (35a) and (35b) are exactly satisfied.

Eq. (35c) will be exactly satisfied if G_i is constructed as a three-vector from \mathbf{x}_a and \mathbf{p}_a .

There should exist a vector $G_i(\mathbf{x}_a, \mathbf{p}_a)$ satisfying relations (35d), (35e), and (35f).

At the Newtonian level, equations

$$\{G_i, H\} = P_i, \tag{37a}$$

$$\{G_i, P_j\} = (m_1 + m_2) \,\delta_{ij},$$
 (37b)

$$\{G_i, G_j\} = 0,$$
 (37c)

are satisfied by the vector

$$G_{\mathsf{N}}^{i}(\mathbf{x}_{a}, \mathbf{p}_{a}) := \sum_{a} m_{a} x_{a}^{i}. \tag{38}$$

Does there exist a 3PN-accurate vector G^i such that Eqs. (35d)–(35f) are fulfilled (within the 3PN accuracy)?

The method of undetermined coefficients

$$G^{i}(\mathbf{x}_{a}, \mathbf{p}_{a}) = \sum_{a=1}^{2} \left[M_{a}(\mathbf{x}_{b}, \mathbf{p}_{b}) x_{a}^{i} + N_{a}(\mathbf{x}_{b}, \mathbf{p}_{b}) p_{ai} \right], \quad (39a)$$

$$M_{a} = m_{a} + \frac{1}{c^{2}} M_{a}^{1\text{PN}} + \frac{1}{c^{4}} M_{a}^{2\text{PN}} + \frac{1}{c^{6}} M_{a}^{3\text{PN}}, \quad (39b)$$

$$N_{a} = \frac{1}{c^{2}} N_{a}^{1\text{PN}} + \frac{1}{c^{4}} N_{a}^{2\text{PN}} + \frac{1}{c^{6}} N_{a}^{3\text{PN}}. \quad (39c)$$

 $M_a^{n\mathsf{PN}}$ and $N_a^{n\mathsf{PN}}$ are sums of scalar monomials of the form

 $c_{n_0n_1n_2n_3n_4n_5} r_{12}^{-n_0} \\ imes (\mathbf{p}_1^2)^{n_1} (\mathbf{p}_2^2)^{n_2} (\mathbf{p}_1 \cdot \mathbf{p}_2)^{n_3} (\mathbf{n}_{12} \cdot \mathbf{p}_1)^{n_4} (\mathbf{n}_{12} \cdot \mathbf{p}_2)^{n_5}, \\ ext{with positive integers } n_0, \dots, n_5.$

One takes into account:

- dimensional analysis (which constrains the possible values of n_0, \ldots, n_5);
- Euclidean covariance (including parity symmetry);
 - time reversal symmetry $(M_a \text{ is even and } N_a \text{ odd under } \mathbf{p}_a \to -\mathbf{p}_a).$

The ansatz yields a system of equations for unknown coefficients c_n .

At the 1PN and 2PN levels the solutions of these equations is *unique*.

At the 3PN level:

- the ansatz for $M_a^{3\text{PN}}$ and $N_a^{3\text{PN}}$ involves 78 unknown coefficients c_n and yields 138 equations to be satisfied;
 - the quantity $\omega_{\rm kinetic}$ enters the system of equations $(\omega_{\rm static}$ drops out of the problem).

There exists a *unique* value of $\omega_{kinetic}$ for which the system of equations is compatible:

$$\omega_{\text{kinetic}} = \frac{41}{24}. \tag{40}$$

If $\omega_{\text{kinetic}} \neq 41/24$, the 3PN Hamiltonian does not admit a global Poincaré invariance.

If $\omega_{\text{kinetic}} = 41/24$, there is a *unique* solution.

2.3 Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches

The ADM-Hamiltonian approach

ADM variables: \mathbf{x}_a , \mathbf{p}_a .

Equations of motion:

$$\dot{\mathbf{x}}_a = \frac{\partial H}{\partial \mathbf{p}_a}, \quad \dot{\mathbf{p}}_a = -\frac{\partial H}{\partial \mathbf{x}_a}.$$
 (41)

The harmonic-coordinates approach (Blanchet, Faye, de Andrade)

Harmonic variables: \mathbf{y}_a , $\mathbf{v}_a \equiv \dot{\mathbf{y}}_a$.

Equations of motion:

$$\ddot{\mathbf{y}}_a = \mathbf{A}_a(\mathbf{y}_b, \mathbf{v}_b; y_1', y_2', \lambda), \qquad (42)$$

 y_1' and y_2' are some regularization length scales (can be gauged away);

 λ is the dimensionless regularization parameter.

The *necessary and sufficient* condition for the transformation

$$\mathbf{y}_a(t) = \mathbf{Y}_a(\mathbf{x}_b(t), \mathbf{p}_b(t)), \qquad (43a)$$

$$\mathbf{v}_a(t) = \mathbf{V}_a(\mathbf{x}_b(t), \mathbf{p}_b(t)), \qquad (43b)$$

to map the ADM dynamics onto the harmonic one is:

$$\{\mathbf{Y}_a, H\} = \mathbf{V}_a, \quad \{\mathbf{V}_a, H\} = \mathbf{A}_a, \tag{44}$$

 \Downarrow

$$\{\{\mathbf{Y}_a, H\}, H\} = \mathbf{A}_a(\mathbf{Y}_b, \{\mathbf{Y}_b, H\}). \tag{45}$$

Eqs. (45) are equations for the two unknown functions $\mathbf{Y}_1(\mathbf{x}_b, \mathbf{p}_b)$ and $\mathbf{Y}_2(\mathbf{x}_b, \mathbf{p}_b)$.

The method of undetermined coefficients

The ansatz for Y_1 and Y_2 gives a *linear* system of 512 equations for the $2 \times 52 = 104$ unknown coefficients.

This system is compatible if and only if the ambiguity parameters ω_{static} and λ are related by

$$\lambda = -\frac{3}{11} \omega_{\text{static}} - \frac{1987}{3080}.$$
 (46)

Then the solution is *unique*.

3 Dimensional regularization of the 3PN two-point-mass Hamiltonian

3.1 Finiteness of the Hamiltonian as $d \rightarrow 3$

$$H_{3PN}(d=3) := \lim_{d \to 3} H_{3PN}(d),$$
 (47)

if no poles proportional to 1/(d-3) arise when $d \to 3$.

There exists **ten** terms T_A , $A = 1, \ldots, 10$, giving rise to poles as $d \to 3$.

Near $r_1 = 0$ they have all the structure:

$$T_{A} = k^{4} m_{1} m_{2} r_{1}^{6-3d}$$

$$\times \left(c_{A1} D(\mathbf{p}_{1}, \mathbf{p}_{1}) + c_{A2} (\mathbf{n}_{1} \cdot \mathbf{p}_{1}) D(\mathbf{n}_{1}, \mathbf{p}_{1}) + \left[c_{A3} (\mathbf{n}_{1} \cdot \mathbf{p}_{1})^{2} + c_{A4} (\mathbf{p}_{1})^{2} \right] D(\mathbf{n}_{1}, \mathbf{n}_{1}) \right),$$
(48)

where c_{A1} , ..., c_{A4} are some d-dependent coefficients,

$$D(\mathbf{p}, \mathbf{q}) := \left(\partial_{ij} r_2^{2-d}\right)_{\mathbf{x} = \mathbf{x}_1} p^i q^j,$$
$$k := \Gamma\left(\frac{d-2}{2}\right) / (4\pi^{\frac{d}{2}}).$$

The "pole" contribution of the term T_A to the Hamiltonian $H_{3PN}(d)$:

$$H_A^{\text{loc sing log}}(d) := \int_{B(\mathbf{x}_1, \ell_1)} d^d x \, T_A$$

$$= -\frac{1}{2} \, \Omega_d \, k^4 \, m_1 \, m_2 \, D(\mathbf{p}_1, \mathbf{p}_1) \, \ell_1^{-2(d-3)} \, \frac{c_A(d)}{d-3}, \tag{49}$$

where Ω_d is the area of the unit sphere in d dimensions.

One expands the coefficients $c_A(d)$ in powers of $\varepsilon \equiv d-3$:

$$c_A(d) = c_A(3) + \varepsilon c'_A(3) + \mathcal{O}(\varepsilon^2). \tag{50}$$

$$A \qquad \qquad c_A$$

1
$$\frac{21}{512} + \frac{1013}{10240} \varepsilon$$

$$-\frac{7}{128} - \frac{1649}{7680} \varepsilon$$

3
$$\frac{7}{2560} + \frac{601}{153600} \varepsilon$$

$$4 \qquad \frac{1}{256} + \frac{53}{5120} \varepsilon$$

$$5 \qquad -\frac{1}{32} - \frac{33}{640} \varepsilon$$

$$6 \qquad \frac{49}{1280} + \frac{5467}{76800} \varepsilon$$

$$\frac{1}{16} + \frac{15}{64}\varepsilon$$

$$8 \qquad \qquad -\frac{1}{16} - \frac{7}{64} \varepsilon$$

9
$$-\frac{21}{2560} - \frac{5423}{153600} \varepsilon$$

$$10 \qquad \frac{21}{2560} + \frac{2903}{153600} \varepsilon$$

The total pole part of $H_{3PN}(d)$ vanishes as $d \to 3$:

$$\sum_{A=1}^{10} c_A(3) = 0.$$
 (51)

3.2 Removing ambiguities of the 3-dimensional regularization results

Let $H_{\rm 3PN~3D~reg}$ be the 3PN Hamiltonian obtained by Riesz-implemented Hadamard regularization performed in d=3 space dimensions.

The correct 3PN Hamiltonian can be computed as

$$\lim_{d\to 3} H_{3PN}(d) = H_{3PN \ 3D \ reg} + \Delta H_{3PN},$$
 (52)

where

$$\Delta H_{3PN} = \lim_{d \to 3} H_{3PN}(d) - H_{3PN \ 3D \ reg}$$
 (53a)

$$= \lim_{d \to 3} H_{3PN}^{loc}(d) - H_{3PN 3D reg}^{loc}$$
 (53b)

$$= \lim_{d \to 3} H_{3PN}^{\text{loc sing}}(d) - H_{3PN 3D \text{ reg}}^{\text{loc sing}}$$
 (53c)

$$= \lim_{d \to 3} H_{3PN}^{\text{loc sing log}}(d) - H_{3PN 3D \text{ reg}}^{\text{loc sing log}}. \quad (53d)$$

$$H_{\text{3PN 3D reg}}^{\text{loc sing log}} = 0,$$
 (54a)

$$\Delta H_{3\text{PN}} = \lim_{d \to 3} H_{3\text{PN}}^{\text{loc sing log}}(d)$$

$$= \lim_{d \to 3} \sum_{A=1}^{10} H_A^{\text{loc sing log}}(d) + (1 \leftrightarrow 2)$$

$$= 32 \frac{G^3 m_1 m_2}{r_{12}^3} \left(\left[\mathbf{p}_1^2 - 3(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \right] + (1 \leftrightarrow 2) \right)$$

$$\times \sum_{A=1}^{10} c_A'(3). \tag{54b}$$

From Eq. (54b) one determines the values of both ambiguity parameters:

$$\omega_{\rm kinetic}^{\rm dim \ reg} = \frac{41}{24},\tag{55a}$$

$$\omega_{\rm static}^{\rm dim\ reg} = 0$$
. (55b)

Conformally flat truncations of general relativity

$$h_{ij}^{\mathsf{TT}} = 0$$

- Violation of global Poincaré invariance (starting at 2PN order).
 - No cancellation of poles leading to a formally infinite 3PN Hamiltonian.