Free-space Taper Consider the energy distribution on a circular aperture of a paraboloidal reflector resulting from illumination by a prime focus feed with uniform radiation pattern. A ray emitted at the angle θ away from symmetry axis of the paraboloid reaches the reflector at a point, whose distance from the aperture centre is
r = 2f tan(θ/2),
where f is the focal length of the telescope considered. This is just the equation
of parabola. The energy contained between cones defined by θ and θ +
dθ is cast onto a ring on our aperture limited by the radii r and
r + dr = 2f tan[(θ + dθ)/2] = r + f/cos2(θ/2) dθ
whose area is equal to 2πr[(r + dr) – r], i.e
2π
2f tan(θ/2) f/cos2(θ/2) dθ =
4πf2 sin(θ/2)/cos3(θ/2) dθ.
This area corresponds to energy flux through the spherical strip of
area
2π(ρ sinθ) ρdθ.
When divided by the sphere radius squared ρ2 it becomes a solid angle
equal to 4π sin(θ/2) cos(θ/2) dθ, which is proportional to total
energy emitted in this angle. Thus on the aperture ring we have the energy density
proportional to this last expression divided by the ring area on the aperture, i.e.
(1/f2)cos4(θ/2).
It can be shown easily that the same ralation holds also for a Cassegrain system,
with the understanding that in this case θ is the angle between a ray originating
in the feed (i.e. in secondary focus) and the paraboloid axis and f is replaced by F,
the effective focal length. Thus in any case, relative to axial ray (with θ = 0)
the energy density falls as cos4(θ/2). For example, the 32-m Torun
telescope has subreflector subtended angle of 2θ = 18.826°, which means that
signals reflected near edge of the dish at the feeds are received weakened by
the factor of cos4(4.7065°) = 0.98658 or about –0.06 dB due to this
so called free-space taper.
It follows that to account for the free space taper in simulation of amplitude distribution on the aperture of Cassegrain telescope one effectively multiplies the amplitudes by cos2(θ/2) = 1/[1+0.25(r/F)2] in addition to the taper function of the feed itself. In practice frequently this free-space illumination function is assumed to be included in the feed illumination function (feed radiation pattern), however in general, and especially when dealing with assymetrical telescopes, the two functions play different roles. |
Ray Tracing Subroutine This procedure is used to trace ray paths all the way between a feed and aperture plane with reflections from a hiperboloidal subreflector and paraboloidal main mirror. It consists of the following steps:
(1) A ray taken from a regular array on the aperture at the distance rp
from the z-axis is projected from corresponding point on the paraboloid onto
subreflector along the direction towards primary focus, assuming perfect
alignment (no offsets) of the secondary. The procedure returns initial (at feed, cax,cay,caz) and final (cx,cy,cz) direction cosines, the pathlength (pathl) and coordinates of the reflection point on paraboloid (xp,yp) and coordinates on the aperture plane (Xapert,Yapert). These coordinates on aperture are used to transform (DFT) amplitude distribution into the telescope power pattern.
subroutine RayTrace(rp,fih ,xp,yp, cax,cay,caz, cx,cy,cz,
* Rdish,Xapert,Yapert,pathl)
c rp,fih - initial/reference coordinates of ray on aperture plane,
c radial distance and angle
c xp,yp - final coordinates of reflection point on paraboloid
c cax,cay,caz - direction cosines at feed
c cx,cy,cz - direction cosines at aperture
c Rdish - radial distance from dish centre to reflection point
c Xapert,Yapert - coordinates of ray on aperture plane
c pathl - length of ray path from feed to aperture plane
implicit real*8 (a-h,o-z)
data deg2rad/0.0174532925199433d0/
common /params/ D,r1,f, r2s,hf2, xsub,ysub,zsub ,subtiltX,
* subtiltY,xoff,yoff,zoff,tiltfX,tiltfy,datNr,parNfu,parNFv, ! par 9-17
* freqmx,freqmy,wavel,TaperdB,zApert,differ,pivot,xpiv,zpiv
*,ddu,ddv,dNsh ! par 18
*,f_D,fbyD,D2,Depth,xDepth,t_V, t_H,t_0,t_1,t_2 ! par 30 - 39
*,Dhc,Dhm,Dh2,g,r1s,fiV,fic,phi0d,fi1,fi2 ! par 40 - 49
*,f1,f2,fs,Feff,amagn, a,c,b,e,Aratio ,beamu ! 50 - 60
*,beamv,HPBWu,HPBWv,fHPBWd, Squint,dphiX,dphiY,dfX0,dfY0
*, Aberrl,SpillL,AberSp,Gillum,TotL
*, ComaL,ComaH,deta_difr,gainl,TotL0
tiltsubX=subtiltX*deg2rad ! needed also in Amplitude procedure
sintX=dsin(tiltsubX)
costX=dsqrt(1-sintX*sintX)
tiltsubY=subtiltY*deg2rad
sintY=dsin(tiltsubY)
costY=dsqrt(1-sintY*sintY)
c Theta=2*datan(rp/(2*f)) ! direction to focus (inclination to -z)
c tanTh_2=rp/(2*f)
sinTheta = rp/(f+rp*rp/(4*f)) != 2*tanTh_2/(1+tanTh_2**2)
cosTheta=(4*f*f-rp*rp)/(4*f*f+rp*rp) !=(1-tanTh_2**2)/(1+tanTh_2**2)
b2 = (c+a)*(c-a)
b2_denom = b2/(a+c*cosTheta)
c corresponding coordinates of this ray on hyperboloid
z = -b2_denom*cosTheta
r = b2_denom*sinTheta
x = r*dcos(fih)
y = r*dsin(fih)
c Components of normal to hyperboloid at the above point:
aN = dsqrt((a**2*r)**2+(b2*(z+c))**2)
cfxr0 = x*a**2/aN
cfyr0 = y*a**2/aN
cfzr0 = -(z+c)*b2/aN
c rotate this unit vector with respect to the pivot in yz plane (by tY)
cfxr = cfxr0
cfyr = cfyr0*costY - cfzr0*sintY
cfzr = cfzr0*costY + cfyr0*sintY
c and in xz plane (by tX)
cfx = cfxr*costX - cfzr*sintX
cfy = cfyr
cfz = cfzr*costX + cfxr*sintX
c rotate coordinates of point as well (first in yz plane)
c in this plane we shall use
zpivY=0 ! i.e. rotation pivot fixed in the prime focus
rpivotY = dsqrt(y**2+(z-zpivY)**2) ! since ypiv=0
if(rpivotY.ne.0d0) dzetaY = datan2(z-zpivY,y)
yhp = rpivotY*dcos(dzetaY+tiltsubY)
zyChng = zpivY + rpivotY*dsin(dzetaY+tiltsubY) - z
c ...and xz plane
rpivotX = dsqrt((x-xpiv)**2+(z-zpiv)**2)
if(rpivotX.ne.0d0) dzetaX = datan2(z-zpiv,x-xpiv)
xhp = xpiv + rpivotX*dcos(dzetaX+tiltsubX)
zhpX = zpiv + rpivotX*dsin(dzetaX+tiltsubX)
zhp=zhpX + zyChng
c now translate the coordinates from hyp. frame to parabloid frame
xh = xhp + xsub
yh = yhp + ysub
zh = zhp + zsub
c pathlength from the secondary focus at (xoff,yoff,zoff - 2 c)
pathl = dsqrt((xh-xoff)**2+(yh-yoff)**2+(zh-(zoff - 2*c))**2)
c direction cosines (from subreflector towards the feed)
cx = (xh-xoff)/pathl
cy = (yh-yoff)/pathl
cz = (zh-(zoff - 2*c))/pathl
c double incident angle cosine C.N (i.e the vector product of C and N)
cosIa2 = (cx*cfx+cy*cfy+cz*cfz)*2
c reflected ray cosines; in vector notation Cr = C - 2 Cf(C.Cf)
c C.Cf = cx*cfx+cy*cfy+cz*cfz =|C|*|Cf|*cos(C-Cf)=cosIa2/2
chx = cx - cfx*cosIa2
chy = cy - cfy*cosIa2
chz = cz - cfz*cosIa2
c Find the point of ray intersection with paraboloid
c Equations to solve are: zp=(xp**2+yp**2)/(4f)-f, xp=xh+dist*chx,
c yp=yh+dist*chy, zp=zh+dist*chz, dist=(zp-zh)/chz,
c or dist**2= [(yp-yh)**2+(xp-xh)**2]/(chx+chy)**2
c 0=[xh+(z-zh)*chx/chz]**2+[yh+(z-zh)*chy/chz]**2-4f(z+f), or
c 0=[xh*chz+(z-zh)*chx]**2+[yh*chz+(z-zh)*chy]**2-4f(z+f)*chz**2
x1 = xh*chz - zh*chx
y1 = yh*chz - zh*chy
c 0=[x1+z*chx]**2+[y1+z*chy]**2-4*f*(z+f)*chz**2, or
c 0=[x1+z*chx]**2+[y1+z*chy]**2-4*f*z*chz**2-4*f**2*chz**2
aa = chx**2 + chy**2
bb = 2*(x1*chx+y1*chy) - 4*f*chz**2
cc=(x1**2+y1**2 - (2*f*chz)**2)
delta = bb**2 - 4*aa*cc
if(aa.gt.0.5) then
zp = (-bb - dsqrt(delta))/(aa + aa)
if((zp - zh)*chz.lt.0d0)
*zp=(-bb + dsqrt(delta))/(aa+aa) ! the other solution
else
zp=2*cc/(-bb + dsqrt(delta))
if((zp - zh)*chz.lt.0d0)
*zp=2*cc/(-bb - dsqrt(delta)) ! the other solution
endif
rpar = 2*sqrt(f*(zp + f))
if(abs(chz).gt..30d0) then ! to account for chz ~= 0
dist = (zp - zh)/chz
else
c dist=(4*f*(f+zh)-xh**2-yh**2)/(-2*f*chz + chx*xh + chy*yh+
c + dSqrt((chx*xh+chy*yh-2*chz*f)**2 +aa*(4*f*(f+zh) -xh**2-yh**2)))
c or equivalently: rhopar**2 = zp**2+rpar**2
c dist+- = rhoCos +/- sqrt(rhoCos**2 + rhopar**2 - rho**2), thus
rhoCos = xh*chx+yh*chy+zh*chz
rhoSq = xh**2 + yh**2 + zh**2
dist=dsqrt(rhoCos**2+zp**2+rpar**2-rhoSq) - rhoCos
endif
xp = xh + dist*chx ! reflection point on dish
yp = yh + dist*chy
c Distance from aperture center, required later to recognize
c rays missing the dish or falling into the subreflector shadow
Rdish = dsqrt((xp-r1-D/2)**2 + yp**2)
c Normal to paraboloid
aNr = 1/dsqrt(rpar*rpar + 4*f*f)
cpx = xp*aNr
cpy = yp*aNr
cpz = -(f + f)*aNr
c incident ray angle cosine
cosIp2 = (chx*cpx + chy*cpy + chz*cpz)*2
c reflected ray cosines
cax = chx - cpx*cosIp2
cay = chy - cpy*cosIp2
caz = chz - cpz*cosIp2
pathl = pathl + dist
c intersection point on aperture plane that contains (0,0,zApert) point
c dist=-(xp*cox+yp*coy+(zp-zApert)*coz)/(cax*cox+cay*coy+caz*coz)
dist = (zApert - zp)/caz
pathl = pathl + dist
Xapert = xp + dist*cax - r1 - D/2 ! <=== final
Yapert = yp + dist*cay ! <=== coordinates
end
|
Beam Deviation due to Subreflector Movements
Formulae for these were presented with enough detail by
J.W.M. Baars. He has however neglected to give explicit
expression for the beam offset in case of arbitrary location of the secondary
rotation center. An expression apparently devised for this purpose is given in
J.W. Lamb's report, but comparison with results obtained
from ray-tracing suggests that as printed there it is not general enough. The Baars
folmulae are based on the so called beam deviation
factors, Kp
and Ks, computed for offsets in prime focus and secondary focus,
respectively. Any subreflector movement of interest can be expressed as sum of
the rotation about its vertex through angle α and lateral
translation by x. The corresponding small angle and displacement approximation
formulae are given as: (α/f)[(2c + zc)Ks/M – zcKp]. It can be noted, that Lamb's formula obtains from the above when both the K quantities are removed from it (or equated to 1).
|